{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# ResNet\n", "当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络子在 2015 年 ImageNet 比赛上大获全胜。\n", "\n", "ResNet 有效地解决了深度神经网络难以训练的问题,可以训练高达 1000 层的卷积网络。网络之所以难以训练,是因为存在着梯度消失的问题,离 loss 函数越远的层,在反向传播的时候,梯度越小,就越难以更新,随着层数的增加,这个现象越严重。之前有两种常见的方案来解决这个问题:\n", "\n", "1.按层训练,先训练比较浅的层,然后在不断增加层数,但是这种方法效果不是特别好,而且比较麻烦\n", "\n", "2.使用更宽的层,或者增加输出通道,而不加深网络的层数,这种结构往往得到的效果又不好\n", "\n", "ResNet 通过引入了跨层链接解决了梯度回传消失的问题。\n", "\n", "![](https://ws1.sinaimg.cn/large/006tNc79ly1fmptq2snv9j30j808t74a.jpg)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "这就普通的网络连接跟跨层残差连接的对比图,使用普通的连接,上层的梯度必须要一层一层传回来,而是用残差连接,相当于中间有了一条更短的路,梯度能够从这条更短的路传回来,避免了梯度过小的情况。\n", "\n", "假设某层的输入是 x,期望输出是 H(x), 如果我们直接把输入 x 传到输出作为初始结果,这就是一个更浅层的网络,更容易训练,而这个网络没有学会的部分,我们可以使用更深的网络 F(x) 去训练它,使得训练更加容易,最后希望拟合的结果就是 F(x) = H(x) - x,这就是一个残差的结构\n", "\n", "残差网络的结构就是上面这种残差块的堆叠,下面让我们来实现一个 residual block" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T12:56:06.772059Z", "start_time": "2017-12-22T12:56:06.766027Z" } }, "outputs": [], "source": [ "import sys\n", "sys.path.append('..')\n", "\n", "import numpy as np\n", "import torch\n", "from torch import nn\n", "import torch.nn.functional as F\n", "from torch.autograd import Variable\n", "from torchvision.datasets import CIFAR10" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T12:47:49.222432Z", "start_time": "2017-12-22T12:47:49.217940Z" } }, "outputs": [], "source": [ "def conv3x3(in_channel, out_channel, stride=1):\n", " return nn.Conv2d(in_channel, out_channel, 3, stride=stride, padding=1, bias=False)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:14:02.429145Z", "start_time": "2017-12-22T13:14:02.383322Z" } }, "outputs": [], "source": [ "class residual_block(nn.Module):\n", " def __init__(self, in_channel, out_channel, same_shape=True):\n", " super(residual_block, self).__init__()\n", " self.same_shape = same_shape\n", " stride=1 if self.same_shape else 2\n", " \n", " self.conv1 = conv3x3(in_channel, out_channel, stride=stride)\n", " self.bn1 = nn.BatchNorm2d(out_channel)\n", " \n", " self.conv2 = conv3x3(out_channel, out_channel)\n", " self.bn2 = nn.BatchNorm2d(out_channel)\n", " if not self.same_shape:\n", " self.conv3 = nn.Conv2d(in_channel, out_channel, 1, stride=stride)\n", " \n", " def forward(self, x):\n", " out = self.conv1(x)\n", " out = F.relu(self.bn1(out), True)\n", " out = self.conv2(out)\n", " out = F.relu(self.bn2(out), True)\n", " \n", " if not self.same_shape:\n", " x = self.conv3(x)\n", " return F.relu(x+out, True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "我们测试一下一个 residual block 的输入和输出" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:14:05.793185Z", "start_time": "2017-12-22T13:14:05.763382Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input: torch.Size([1, 32, 96, 96])\n", "output: torch.Size([1, 32, 96, 96])\n" ] } ], "source": [ "# 输入输出形状相同\n", "test_net = residual_block(32, 32)\n", "test_x = Variable(torch.zeros(1, 32, 96, 96))\n", "print('input: {}'.format(test_x.shape))\n", "test_y = test_net(test_x)\n", "print('output: {}'.format(test_y.shape))" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:14:11.929120Z", "start_time": "2017-12-22T13:14:11.914604Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "input: torch.Size([1, 3, 96, 96])\n", "output: torch.Size([1, 32, 48, 48])\n" ] } ], "source": [ "# 输入输出形状不同\n", "test_net = residual_block(3, 32, False)\n", "test_x = Variable(torch.zeros(1, 3, 96, 96))\n", "print('input: {}'.format(test_x.shape))\n", "test_y = test_net(test_x)\n", "print('output: {}'.format(test_y.shape))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "下面我们尝试实现一个 ResNet,它就是 residual block 模块的堆叠" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:27:46.099404Z", "start_time": "2017-12-22T13:27:45.986235Z" } }, "outputs": [], "source": [ "class resnet(nn.Module):\n", " def __init__(self, in_channel, num_classes, verbose=False):\n", " super(resnet, self).__init__()\n", " self.verbose = verbose\n", " \n", " self.block1 = nn.Conv2d(in_channel, 64, 7, 2)\n", " \n", " self.block2 = nn.Sequential(\n", " nn.MaxPool2d(3, 2),\n", " residual_block(64, 64),\n", " residual_block(64, 64)\n", " )\n", " \n", " self.block3 = nn.Sequential(\n", " residual_block(64, 128, False),\n", " residual_block(128, 128)\n", " )\n", " \n", " self.block4 = nn.Sequential(\n", " residual_block(128, 256, False),\n", " residual_block(256, 256)\n", " )\n", " \n", " self.block5 = nn.Sequential(\n", " residual_block(256, 512, False),\n", " residual_block(512, 512),\n", " nn.AvgPool2d(3)\n", " )\n", " \n", " self.classifier = nn.Linear(512, num_classes)\n", " \n", " def forward(self, x):\n", " x = self.block1(x)\n", " if self.verbose:\n", " print('block 1 output: {}'.format(x.shape))\n", " x = self.block2(x)\n", " if self.verbose:\n", " print('block 2 output: {}'.format(x.shape))\n", " x = self.block3(x)\n", " if self.verbose:\n", " print('block 3 output: {}'.format(x.shape))\n", " x = self.block4(x)\n", " if self.verbose:\n", " print('block 4 output: {}'.format(x.shape))\n", " x = self.block5(x)\n", " if self.verbose:\n", " print('block 5 output: {}'.format(x.shape))\n", " x = x.view(x.shape[0], -1)\n", " x = self.classifier(x)\n", " return x" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "输出一下每个 block 之后的大小" ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:28:00.597030Z", "start_time": "2017-12-22T13:28:00.417746Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "block 1 output: torch.Size([1, 64, 45, 45])\n", "block 2 output: torch.Size([1, 64, 22, 22])\n", "block 3 output: torch.Size([1, 128, 11, 11])\n", "block 4 output: torch.Size([1, 256, 6, 6])\n", "block 5 output: torch.Size([1, 512, 1, 1])\n", "output: torch.Size([1, 10])\n" ] } ], "source": [ "test_net = resnet(3, 10, True)\n", "test_x = Variable(torch.zeros(1, 3, 96, 96))\n", "test_y = test_net(test_x)\n", "print('output: {}'.format(test_y.shape))" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:29:01.484172Z", "start_time": "2017-12-22T13:29:00.095952Z" }, "collapsed": true }, "outputs": [], "source": [ "from utils import train\n", "\n", "def data_tf(x):\n", " x = x.resize((96, 96), 2) # 将图片放大到 96 x 96\n", " x = np.array(x, dtype='float32') / 255\n", " x = (x - 0.5) / 0.5 # 标准化,这个技巧之后会讲到\n", " x = x.transpose((2, 0, 1)) # 将 channel 放到第一维,只是 pytorch 要求的输入方式\n", " x = torch.from_numpy(x)\n", " return x\n", " \n", "train_set = CIFAR10('./data', train=True, transform=data_tf)\n", "train_data = torch.utils.data.DataLoader(train_set, batch_size=64, shuffle=True)\n", "test_set = CIFAR10('./data', train=False, transform=data_tf)\n", "test_data = torch.utils.data.DataLoader(test_set, batch_size=128, shuffle=False)\n", "\n", "net = resnet(3, 10)\n", "optimizer = torch.optim.SGD(net.parameters(), lr=0.01)\n", "criterion = nn.CrossEntropyLoss()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "ExecuteTime": { "end_time": "2017-12-22T13:45:00.783186Z", "start_time": "2017-12-22T13:29:09.214453Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Epoch 0. Train Loss: 1.437317, Train Acc: 0.476662, Valid Loss: 1.928288, Valid Acc: 0.384691, Time 00:00:44\n", "Epoch 1. Train Loss: 0.992832, Train Acc: 0.648198, Valid Loss: 1.009847, Valid Acc: 0.642405, Time 00:00:48\n", "Epoch 2. Train Loss: 0.767309, Train Acc: 0.732617, Valid Loss: 1.827319, Valid Acc: 0.430380, Time 00:00:47\n", "Epoch 3. Train Loss: 0.606737, Train Acc: 0.788043, Valid Loss: 1.304808, Valid Acc: 0.585245, Time 00:00:46\n", "Epoch 4. Train Loss: 0.484436, Train Acc: 0.834499, Valid Loss: 1.335749, Valid Acc: 0.617089, Time 00:00:47\n", "Epoch 5. Train Loss: 0.374320, Train Acc: 0.872922, Valid Loss: 0.878519, Valid Acc: 0.724288, Time 00:00:47\n", "Epoch 6. Train Loss: 0.280981, Train Acc: 0.904212, Valid Loss: 0.931616, Valid Acc: 0.716871, Time 00:00:48\n", "Epoch 7. Train Loss: 0.210800, Train Acc: 0.929747, Valid Loss: 1.448870, Valid Acc: 0.638548, Time 00:00:48\n", "Epoch 8. Train Loss: 0.147873, Train Acc: 0.951427, Valid Loss: 1.356992, Valid Acc: 0.657536, Time 00:00:47\n", "Epoch 9. Train Loss: 0.112824, Train Acc: 0.963895, Valid Loss: 1.630560, Valid Acc: 0.627769, Time 00:00:47\n", "Epoch 10. Train Loss: 0.082685, Train Acc: 0.973905, Valid Loss: 0.982882, Valid Acc: 0.744264, Time 00:00:44\n", "Epoch 11. Train Loss: 0.065325, Train Acc: 0.979680, Valid Loss: 0.911631, Valid Acc: 0.767009, Time 00:00:47\n", "Epoch 12. Train Loss: 0.041401, Train Acc: 0.987952, Valid Loss: 1.167992, Valid Acc: 0.729826, Time 00:00:48\n", "Epoch 13. Train Loss: 0.037516, Train Acc: 0.989011, Valid Loss: 1.081807, Valid Acc: 0.746737, Time 00:00:47\n", "Epoch 14. Train Loss: 0.030674, Train Acc: 0.991468, Valid Loss: 0.935292, Valid Acc: 0.774031, Time 00:00:45\n", "Epoch 15. Train Loss: 0.021743, Train Acc: 0.994565, Valid Loss: 0.879348, Valid Acc: 0.790150, Time 00:00:47\n", "Epoch 16. Train Loss: 0.014642, Train Acc: 0.996463, Valid Loss: 1.328587, Valid Acc: 0.724387, Time 00:00:47\n", "Epoch 17. Train Loss: 0.011072, Train Acc: 0.997363, Valid Loss: 0.909065, Valid Acc: 0.792919, Time 00:00:47\n", "Epoch 18. Train Loss: 0.006870, Train Acc: 0.998561, Valid Loss: 0.923746, Valid Acc: 0.794403, Time 00:00:46\n", "Epoch 19. Train Loss: 0.004240, Train Acc: 0.999500, Valid Loss: 0.877908, Valid Acc: 0.802314, Time 00:00:46\n" ] } ], "source": [ "train(net, train_data, test_data, 20, optimizer, criterion)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "ResNet 使用跨层通道使得训练非常深的卷积神经网络成为可能。同样它使用很简单的卷积层配置,使得其拓展更加简单。\n", "\n", "**小练习: \n", "1.尝试一下论文中提出的 bottleneck 的结构 \n", "2.尝试改变 conv -> bn -> relu 的顺序为 bn -> relu -> conv,看看精度会不会提高**" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }