import torch from torch import nn, optim from torch.autograd import Variable import numpy as np import matplotlib.pyplot as plt torch.manual_seed(2018) # model's real-parameters w_target = 3 b_target = 10 # generate data n_data = 100 x_train = np.random.rand(n_data, 1)*20 - 10 y_train = w_target*x_train + b_target + (np.random.randn(n_data, 1)*10-5.0) # draw the data plt.plot(x_train, y_train, 'bo') plt.show() # convert to tensor x_train = torch.from_numpy(x_train).float() y_train = torch.from_numpy(y_train).float() # Linear Regression Model class LinearRegression(nn.Module): def __init__(self): super(LinearRegression, self).__init__() self.linear = nn.Linear(1, 1) # input and output is 1 dimension def forward(self, x): out = self.linear(x) return out # create the model model = LinearRegression() # 定义loss和优化函数 criterion = nn.MSELoss() optimizer = optim.SGD(model.parameters(), lr=1e-4) # 开始训练 num_epochs = 1000 for epoch in range(num_epochs): inputs = Variable(x_train) target = Variable(y_train) # forward out = model(inputs) loss = criterion(out, target) # backward optimizer.zero_grad() loss.backward() optimizer.step() if (epoch+1) % 20 == 0: print('Epoch[{}/{}], loss: {:.6f}' .format(epoch+1, num_epochs, loss.data[0])) # do evaluation & plot model.eval() predict = model(Variable(x_train)) predict = predict.data.numpy() plt.plot(x_train.numpy(), y_train.numpy(), 'bo', label='Real') plt.plot(x_train.numpy(), predict, 'ro', label='Estimated') plt.legend() plt.show()