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I Future?

l...‘

Using information relayed from the swarm, human swarm tacticians adaptively employed
various swarm tactics their teams had developed to isolate and secure the identified items
while maintaining situational awareness and surveillance of the environment.

FROM MULTIPLE AIR PLATFORMS




UAV

® Small, cheap

® No pilot

® Convenient

® Strong survivability

® Aerial photograph
® Attack

® Air platform

® General aviation




I UAV - Autonomous

AN

Remote Control

N

»

-

Heavy workload
Professional training
Difficult to be cluster

\

Autonomous




I How to Realize Autonomous?

Eye

Brain

—> Ear —>

How to realize autonomous?

Environment

Body




I How to Realize Autonomous?

Eye

uondadniag
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uoIsIda(g

— Ear S — BOdy

Knowledge

Environment <



I New Challenges

o8
2t

T .Ih-*’
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‘ Mapping ‘

® Multi-type sensors: IMU, GPS, Image, LIDAR, RADAR ...
® High quality and real-time speed required
® Reasoning and knowledge are important for realizing strong Al



| Applications




| Applications

TUNNEL AND MULTI-LEVEL HIGHWAY | Tokyo, Japan

smiling

smiling man
woman woman man 9

output



I Applications

Build Keras Models What would you like to know?

Build a model to classify images into 5 groups. The dataset has
25000 images, with an input shape of 500x500.

GPT-3 Automatic Keras Model GPT-3 Automatic SQL



| Applications
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I How to Achieve Intelligence?
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IWhat is Machine Learning?

Machine learning seeks to develop theories and computer systems for
® Representing

Classifying, clustering, recognizing

Reasoning under uncertainty

Predicting

And reacting to

Complex, real world data, based on the system’s own experience with data,
and (hopefully) under a unified model or mathematical framework, that
® Can be formally characterized and analyzed
Can take into account human prior knowledge
Can generalize and adapt across data and domains
Can operate automatically and autonomously
And can be interpreted and perceived by human



I Pattern?

“A pattern is the opposite of a chaos; it is an entity
vaguely defined, that could be given a name.”

- Watanabe

- L




I Recognition

|dentification of a pattern as a member of a category we
already know, or we are familiar with

— Classification (known categories)
— Clustering (learning categories)

}2?/ \\A 7/ -
SN O FER e
A L1 L d
B Category "B” ]/ [ /
LB &

Classification Clustering



I Representation

Each pattern is represented as a point in é-cdimensional feature
space

Choice of features and their desired invariance properties are
domain-specific

X1 % x ¢ X2

Good representation implies (i) small intra-class variation, (ii) large
inter-class separation and (iii) simple decision boundary




I Pattern Class

* A collection of similar (not necessarily identical)
objects

« A class is defined by class samples (paradigms,
exemplars, prototypes, training/learning samples)

* Intra-class variability
 Inter-class similarity

 How do we define similarity?



I Intra-class Variability

G T 7 5 TN

The (etter “T" (n different typefoces

Same face under different expression, pose, (((umination




I Inter-class Similarity

Identical twins Characters that look similar



nter-class or Intra-class?




I Good Representation

Should have some invariant properties (e.g., rotation,
translation, scale, ...)

Account for intra-class variations
Ability to discriminate pattern classes of interest
Robustness to noise, occlusion,..

Lead to simple decision making strategies (e.g., linear
decision boundary)

Low measurement cost; real-time




I Good Representation

ﬂ handle
2
@ wheel

Input
Input space
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“handle”
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algorithm

Feature space




I Good Representation

3rd layer
“Objects” _
* Represent objects from low-
level to high-level structure
2nd layer
‘Object parts” « Can share the low-level
representation for multiple
1st layer
wadee” tasks

Input




I Deep Learning = Learning Hierarchical Representation

@ Traditional Pattern Recognition: Fixed/Handcrafted Feature Extractor

Feature

Extractor

Feature Mid-Level
—-—

Extractor Features




The Mammalian Visual Cortex is Hierarchical

® The ventral (recognition) pathway in the visual cortex has multiple stages
® Retina-LGN-V1-V2-V4-PIT-AIT ...
® Lots of intermediate representations

WHERE? (Motion,
Spatial Relationships)

[Parietal stream]

PP |

WHAT? (Form, Color}

[inferotemporal stream]

MST/

G <l AIT,
e | cIT

<% @ 4|PIT

MEC  stream
{magac-dem

4 @®

v2

va

BD siream
(blob-domini

ID straam
{irterb oo-don

Retina At
LGN e i, %
M K P
Orientation —» Direction WiA, Pattern (olaid) —
! Pur
x Spatal o Disparity Wl metior O il
‘A frequse
/ ‘ 5y Mon-Cartesian
vk < W ength
v (high flow) @ waveleng \J Naros
jl Temporal ~  Subjective
nt frequsney 3 contauf Non-Gartesian (f\’ Fanes

(high/low)

pattera

Motor.command
Categorical judgments, 140—190 o -~ ‘ .
decision making Simple visual forms
corne
120-160 ms- . edges, corners
100-130 ms PFC /

High level object
descriptions,
faces, objects

~—— To spinal cord
< Tofinger muscle -« - ——160-220 ms

180-260 ms

[picture from Simon Thorpe]
[Gallant & Van Essen]




I Deep Learning = Learning Hierarchical Representation

It's deep if it has more than one stage of non-linear feature transformation

Low-Level| |Mid-Level| |High-Level| | Trainable
Feature Feature Feature Classifier

A
A
A




Neural Networks and Deep Learning



I Perceptron and Neural Networks

e From biological neuron to artificial neuron (perceptron)

Inputs

.S Linear Hard
“‘t. Combiner  Limiter
=~ Output
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I Neural Networks

o
Neural networks
sample label
_— N —
_—> A hw_b{X}
C +1 Layer L,




I Neural Networks - Feedforward Networks

? ——> hy, (%)

|

LayerL,

hwalz) = FWTz) = F(XZ2, Wiz + b)

1
f(2) = 1 + exp{—z)




Neural Networks - Feedforward Networks




I Neural Networks - Disadvantages

® The number of trainable parameters becomes extremely large

® Little or no invariance to shifting, scaling, and other forms of distortion

256 weights/r( :
/
//
L

16 wheights

fi

Ll L1
Input Image
16 = 16

100 hiden unit
25600 + 100 + 2600 +26 = 28316




I Hierarchical / Deep Architectures for Vision

Filter | Non- Lol Spatial "Filter | Non- L} Spatial

Bank Linearity Pooling Bank Linearity Pooling

Classifier

« Multiple Stages
« Each Stage is composed of
— A bank of local filters (convolutions)

— A non-linear layer (may include harsh non-linearities, such as
rectification, contrast normalization, etc...).

— A feature pooling layer
Multiple stages can be stacked to produce high-level representations

— Each stage makes the representation more global, and more
invariant

The systems can be trained with a combination of unsupervised and
supervised methods



I Convolutional Neural Network: Multi-stage Trainable Architecture

Pooling

Convolutions, i
Subsampling

S Convolutions,
Filtering

Classification

Convolutions,

Filtering Pooling

! 8 2 Subsamplin
@ Hierarchical Architecture oy

» Representations are more global, more invariant, and more
abstract as we go up the layers

@ Alternated Layers of Filtering and Spatial Pooling
» Filtering detects conjunctions of features
» Pooling computes local disjunctions of features

@ Fully Trainable
» All the layers are trainable



I Convolutional Layer or Feature Extraction Layer
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I Subsampling Layer

Feature map

® By reducing the spatial resolution of the feature map, reduce the effect of noises and
shift or distortion.
® The weight sharing is also applied in subsampling layers



Convolutional Neural Networks - Demo




I Convolutional Neural Networks - Hand-Writing Recognition
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I Application (1) Image Annotation

|:| imp_surf - Building |:| Low vegetation

- Tree |:| Car

- Clutter

(a) original image (b) shallow features (c) deep features (d) multi-modal features

Ke Li, et al. Multi-modal feature fusion for geographic image annotation



I Application (1) Image Annotation

: Shallow-feature (Color) ]
" C fiss
Shallow | ; §
Modality . =
" Shallow-feat )
Shallow-feature (DSIFT) a T‘:‘;'tu‘?: ure g
AE4EAE g s
8w x
= P »
c 5
— S
Superpixel Segmentation ol g
8l e 2
: SEHE
' 2 G
[ o
- 3
: o
: g
>4 1 :
: g
Deep . ' g
Modality | CNNs : &
(a) Low-level Feature Extraction (b) Mid-level Feature (¢) High-level Feature B (d) J:)i;t
Construction based on Superpixel Construction based on DBNs epresentanion

based on RBM

Ke Li, et al. Multi-modal feature fusion for geographic image annotation



Joseph Redmon, et al. YOLOv3: An Incremental Improvement



Application (2) Object Detection

Darknet-53 without FC layer

Emd DBL resl res2 res8

r_’-

13x13x255

416x416x3
DBL
Yolo_v3_Structure DBL*S 26:26:255
DBL*S 52x52x255

Darknetconv2D_BN_Leaky Res_unit Resblock_body

=T DBL  DBL add resn £ .iime | DBL —'m—‘
uni U 4
\__.V_!
Res_unit*n

Joseph Redmon, et al. YOLOv3: An Incremental Improvement




Estimate position and depth image simultaneously

Tinghui Zhou, et al., Unsupervised Learning of Depth and Ego-Motion from Video



I Application (3) Deep Learning based SLAM

Depth CNN

Tinghui Zhou, et al., Unsupervised Learning of Depth and Ego-Motion from Video



I Application (4) Place Recognition

Sourav Garyg, et al., LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics



I Application (4) Place Recognition

o Rearview (a) Semantically labelled descriptors of
%Iength D per 2D location in WxH
I\; g Q (¢) Local Semantic Tensor
L NNy . ——]
Input — =
Imag . Dense Conv5 Tensor
WxHxD
Semantic (b) Residual aggregation I(I;’e?s(g::)l:;l'
mentation for each semantic class :
Seg Semantic Labels Matching

Top N Candidates

(g) Semantically-
consistent T
Keypoints [

N\

AN

(h) Pairwise local
descriptor matching

(e) Activations for different
feature maps of the tensor

(f) Frequency Map of
high-activation regions

Matching |

N\

(i) Weighted

Keypoint

Final Match

Sourav Garyg, et al., LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics



Application (5) Realtime 3D Map

TerrainFusion: Real-time Digital Surface Model
Reconstruction based on Monocular SLAM

Wei Wang, et al., TerrainFusion: Real-time Digital Surface Model Reconstruction based on Monocular SLAM



I Application (5) Realtime 3D Map

[ visual SLAM | [ Local DSM Generation | [ DSM Fusion \
re‘" [ Noise Filter
feMme 2D Mesh Image . :
Feature > Patches Stitch whﬂ Blend _Mg',tlt‘randr DE!\{!
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Frame 2DTo3D ! ]
¥ 3D Mesh !
= = | \} No Multiband DSM
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Optimization ]
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Fit GPS el o
- e A Ortho Mosaic
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I
Pointcloud i
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_ J U = J vy

Wei Wang, et al., TerrainFusion: Real-time Digital Surface Model Reconstruction based on Monocular SLAM



I Summary - Methods
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I Summary - Problems

« General-purpose intelligent system is a very difficult problem

« Successful systems available in well-constrained domains

« All components are coupled

« No single approach has been found to be optimal for all problems

« Use of object models, constraints and context is necessary for
identifying complex patterns

« Careful sensor design and feature extraction often lead to simple
classifiers



I Summary - Future

Representation Organize and
Storage Recognition Generate
Computing (Text, Voice, Knowledge,
Image, Video, 3D) Reasoning

Computing Perception Cognition
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I Materials

Notebook: https://gitee.com/pi-lab/machinelearning notebook
Homework: https://gitee.com/pi-lab/machinelearning homework

Notebook Homework
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