{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Softmax & 交叉熵代价函数\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "softmax经常被添加在分类任务的神经网络中的输出层,神经网络的反向传播中关键的步骤就是求导,从这个过程也可以更深刻地理解反向传播的过程,还可以对梯度传播的问题有更多的思考。\n", "\n", "## softmax 函数\n", "\n", "softmax(柔性最大值)函数,一般在神经网络中, softmax可以作为分类任务的输出层。其实可以认为softmax输出的是几个类别选择的概率,比如我有一个分类任务,要分为三个类,softmax函数可以根据它们相对的大小,输出三个类别选取的概率,并且概率和为1。\n", "\n", "softmax函数的公式是这种形式:\n", "\n", "$$\n", "S_i = \\frac{e^{z_i}}{\\sum_k e^{z_k}}\n", "$$\n", "\n", "* $S_i$是经过softmax的类别概率输出\n", "* $z_k$是神经元的输出\n", "\n", "\n", "更形象的如下图表示:\n", "\n", "![softmax_demo](images/softmax_demo.png)\n", "\n", "softmax直白来说就是将原来输出是$[3,1,-3]$通过softmax函数一作用,就映射成为(0,1)的值,而这些值的累和为1(满足概率的性质),那么我们就可以将它理解成概率,在最后选取输出结点的时候,我们就可以选取概率最大(也就是值对应最大的)结点,作为我们的预测目标!\n", "\n", "\n", "\n", "首先是神经元的输出,一个神经元如下图:\n", "\n", "![softmax_neuron](images/softmax_neuron.png)\n", "\n", "神经元的输出设为:\n", "\n", "$$\n", "z_i = \\sum_{j} w_{ij} x_{j} + b\n", "$$\n", "\n", "其中$W_{ij}$是第$i$个神经元的第$j$个权重,$b$是偏置。$z_i$表示该网络的第$i$个输出。\n", "\n", "给这个输出加上一个softmax函数,那就变成了这样:\n", "\n", "$$\n", "a_i = \\frac{e^{z_i}}{\\sum_k e^{z_k}}\n", "$$\n", "\n", "$a_i$代表softmax的第$i$个输出值,右侧套用了softmax函数。\n", "\n", "\n", "### 损失函数 loss function\n", "\n", "在神经网络反向传播中,要求一个损失函数,这个损失函数其实表示的是真实值与网络的估计值的误差,知道误差了,才能知道怎样去修改网络中的权重。\n", "\n", "损失函数可以有很多形式,这里用的是交叉熵函数,主要是由于这个求导结果比较简单,易于计算,并且交叉熵解决某些损失函数学习缓慢的问题。**[交叉熵函数](https://blog.csdn.net/u014313009/article/details/51043064)**是这样的:\n", "\n", "$$\n", "C = - \\sum_i y_i ln a_i\n", "$$\n", "\n", "其中$y_i$表示真实的分类结果。\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 推导过程\n", "\n", "首先,我们要明确一下我们要求什么,我们要求的是我们的$loss$对于神经元输出($z_i$)的梯度,即:\n", "\n", "$$\n", "\\frac{\\partial C}{\\partial z_i}\n", "$$\n", "\n", "根据复合函数求导法则:\n", "\n", "$$\n", "\\frac{\\partial C}{\\partial z_i} = \\frac{\\partial C}{\\partial a_j} \\frac{\\partial a_j}{\\partial z_i}\n", "$$\n", "\n", "有个人可能有疑问了,这里为什么是$a_j$而不是$a_i$,这里要看一下$softmax$的公式了,因为$softmax$公式的特性,它的分母包含了所有神经元的输出,所以,对于不等于i的其他输出里面,也包含着$z_i$,所有的$a$都要纳入到计算范围中,并且后面的计算可以看到需要分为$i = j$和$i \\ne j$两种情况求导。\n", "\n", "### 针对$a_j$的偏导\n", "\n", "$$\n", "\\frac{\\partial C}{\\partial a_j} = \\frac{(\\partial -\\sum_j y_j ln a_j)}{\\partial a_j} = -\\sum_j y_j \\frac{1}{a_j}\n", "$$\n", "\n", "### 针对$z_i$的偏导\n", "\n", "如果 $i=j$ :\n", "\n", "\\begin{eqnarray}\n", "\\frac{\\partial a_i}{\\partial z_i} & = & \\frac{\\partial (\\frac{e^{z_i}}{\\sum_k e^{z_k}})}{\\partial z_i} \\\\\n", " & = & \\frac{\\sum_k e^{z_k} e^{z_i} - (e^{z_i})^2}{\\sum_k (e^{z_k})^2} \\\\\n", " & = & (\\frac{e^{z_i}}{\\sum_k e^{z_k}} ) (1 - \\frac{e^{z_i}}{\\sum_k e^{z_k}} ) \\\\\n", " & = & a_i (1 - a_i)\n", "\\end{eqnarray}\n", "\n", "如果 $i \\ne j$:\n", "\\begin{eqnarray}\n", "\\frac{\\partial a_j}{\\partial z_i} & = & \\frac{\\partial (\\frac{e^{z_j}}{\\sum_k e^{z_k}})}{\\partial z_i} \\\\\n", " & = & \\frac{0 \\cdot \\sum_k e^{z_k} - e^{z_j} \\cdot e^{z_i} }{(\\sum_k e^{z_k})^2} \\\\\n", " & = & - \\frac{e^{z_j}}{\\sum_k e^{z_k}} \\cdot \\frac{e^{z_i}}{\\sum_k e^{z_k}} \\\\\n", " & = & -a_j a_i\n", "\\end{eqnarray}\n", "\n", "当u,v都是变量的函数时的导数推导公式:\n", "$$\n", "(\\frac{u}{v})' = \\frac{u'v - uv'}{v^2} \n", "$$\n", "\n", "### 整体的推导\n", "\n", "\\begin{eqnarray}\n", "\\frac{\\partial C}{\\partial z_i} & = & (-\\sum_j y_j \\frac{1}{a_j} ) \\frac{\\partial a_j}{\\partial z_i} \\\\\n", " & = & - \\frac{y_i}{a_i} a_i ( 1 - a_i) + \\sum_{j \\ne i} \\frac{y_j}{a_j} a_i a_j \\\\\n", " & = & -y_i + y_i a_i + \\sum_{j \\ne i} y_j a_i \\\\\n", " & = & -y_i + a_i \\sum_{j} y_j\n", "\\end{eqnarray}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 问题\n", "如何将本节所讲的softmax,交叉熵代价函数应用到上节所讲的方法中?" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## References\n", "\n", "* Softmax & 交叉熵\n", " * [交叉熵代价函数(作用及公式推导)](https://blog.csdn.net/u014313009/article/details/51043064)\n", " * [手打例子一步一步带你看懂softmax函数以及相关求导过程](https://www.jianshu.com/p/ffa51250ba2e)\n", " * [简单易懂的softmax交叉熵损失函数求导](https://www.jianshu.com/p/c02a1fbffad6)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.5.2" }, "main_language": "python" }, "nbformat": 4, "nbformat_minor": 2 }