Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
2 years ago | |
---|---|---|
.. | ||
1_CNN | 2 years ago | |
2_RNN | 2 years ago | |
3_GAN | 3 years ago | |
4_NLP | 3 years ago | |
imgs | 3 years ago | |
README.md | 2 years ago |
深度学习(Deep Learning)是机器学习的分支,是一种试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的算法。 深度学习是机器学习中一种基于对数据进行表征学习的算法,至今已有数种深度学习框架,如卷积神经网络、深度置信网络、递归神经网络等已被应用在计算机视觉、语音识别、自然语言处理、音频识别与生物信息学等领域并获取了极好的效果。
区别于传统的浅层学习,深度学习的不同在于:
通过设计建立适量的神经元计算节点和多层运算层次结构,选择合适的输人层和输出层,通过网络的学习和调优,建立起从输入到输出的函数关系,虽然不能100%找到输入与输出的函数关系,但是可以尽可能的逼近现实的关联关系。使用训练成功的网络模型,就可以实现我们对复杂事务处理的自动化要求。
典型的深度学习模型有卷积神经网络(convolutional neural network)、深度置信网络(Deep Belief Network, DBN)、堆栈自编码网络(stacked auto-encoder network)、循环神经网络(Recurrent Neural Network)、对抗生成网络(Generative Adversarial Networks,GAN)等。
下图展示了深度学习常见网络的发展历程
机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。
Jupyter Notebook SVG Python Text CSV other