Are you sure you want to delete this task? Once this task is deleted, it cannot be recovered.
|
3 years ago | |
---|---|---|
.. | ||
All Cheat Sheets.pdf | 4 years ago | |
Bokeh.pdf | 4 years ago | |
Deep Learning Cheat Sheet-Hacker Noon.pdf | 4 years ago | |
Keras.jpg | 4 years ago | |
Matplotlib.png | 4 years ago | |
Neural Network Cells.png | 4 years ago | |
Neural Network Graphs.png | 4 years ago | |
Neural Networks Zoo.png | 4 years ago | |
Numpy.png | 4 years ago | |
Pandas-1.jpg | 4 years ago | |
Pandas-2.jpg | 4 years ago | |
Pandas-3.png | 4 years ago | |
README.md | 4 years ago | |
Scikit Learn.pdf | 4 years ago | |
Scikit Learn.png | 4 years ago | |
Scipy.png | 4 years ago | |
Seaborn.pdf | 4 years ago | |
conda.pdf | 4 years ago | |
python3.pdf | 4 years ago | |
scikit-learn_algorithm_cheat-sheet.jpg | 3 years ago |
机器学习越来越多应用到飞行器、机器人等领域,其目的是利用计算机实现类似人类的智能,从而实现装备的智能化与无人化。本课程旨在引导学生掌握机器学习的基本知识、典型方法与技术,通过具体的应用案例激发学生对该学科的兴趣,鼓励学生能够从人工智能的角度来分析、解决飞行器、机器人所面临的问题和挑战。本课程主要内容包括Python编程基础,机器学习模型,无监督学习、监督学习、深度学习基础知识与实现,并学习如何利用机器学习解决实际问题,从而全面提升自我的《综合能力》。
Jupyter Notebook SVG Python Text CSV other