|
- # ---
- # jupyter:
- # jupytext_format_version: '1.2'
- # kernelspec:
- # display_name: Python 3
- # language: python
- # name: python3
- # ---
-
- # %% 1
- # Package imports
- import matplotlib.pyplot as plt
- import numpy as np
- import sklearn
- import sklearn.datasets
- import sklearn.linear_model
- import matplotlib
-
- # Display plots inline and change default figure size
- # %matplotlib inline
- matplotlib.rcParams['figure.figsize'] = (10.0, 8.0)
-
- # %% 2
- np.random.seed(3)
- X, y = sklearn.datasets.make_moons(200, noise=0.20)
- plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
-
- # %% 3
- # Train the logistic rgeression classifier
- clf = sklearn.linear_model.LogisticRegressionCV()
- clf.fit(X, y)
-
- # %% 4
- # Helper function to plot a decision boundary.
- # If you don't fully understand this function don't worry, it just generates the contour plot below.
- def plot_decision_boundary(pred_func):
- # Set min and max values and give it some padding
- x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
- y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
- h = 0.01
- # Generate a grid of points with distance h between them
- xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
- # Predict the function value for the whole gid
- Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
- Z = Z.reshape(xx.shape)
- # Plot the contour and training examples
- plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
- plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)
-
- # %% 12
- # Plot the decision boundary
- plot_decision_boundary(lambda x: clf.predict(x))
- plt.title("Logistic Regression")
-
- # %% 15
- num_examples = len(X) # training set size
- nn_input_dim = 2 # input layer dimensionality
- nn_output_dim = 2 # output layer dimensionality
-
- # Gradient descent parameters (I picked these by hand)
- epsilon = 0.01 # learning rate for gradient descent
- reg_lambda = 0.01 # regularization strength
-
- # %% 7
- # Helper function to evaluate the total loss on the dataset
- def calculate_loss(model):
- W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
- # Forward propagation to calculate our predictions
- z1 = X.dot(W1) + b1
- a1 = np.tanh(z1)
- z2 = a1.dot(W2) + b2
- exp_scores = np.exp(z2)
- probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
- # Calculating the loss
- corect_logprobs = -np.log(probs[range(num_examples), y])
- data_loss = np.sum(corect_logprobs)
- # Add regulatization term to loss (optional)
- data_loss += reg_lambda/2 * (np.sum(np.square(W1)) + np.sum(np.square(W2)))
- return 1./num_examples * data_loss
-
- # %% 8
- # Helper function to predict an output (0 or 1)
- def predict(model, x):
- W1, b1, W2, b2 = model['W1'], model['b1'], model['W2'], model['b2']
- # Forward propagation
- z1 = x.dot(W1) + b1
- a1 = np.tanh(z1)
- z2 = a1.dot(W2) + b2
- exp_scores = np.exp(z2)
- probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
- return np.argmax(probs, axis=1)
-
- # %% 16
- # This function learns parameters for the neural network and returns the model.
- # - nn_hdim: Number of nodes in the hidden layer
- # - num_passes: Number of passes through the training data for gradient descent
- # - print_loss: If True, print the loss every 1000 iterations
- def build_model(nn_hdim, num_passes=20000, print_loss=False):
-
- # Initialize the parameters to random values. We need to learn these.
- np.random.seed(0)
- W1 = np.random.randn(nn_input_dim, nn_hdim) / np.sqrt(nn_input_dim)
- b1 = np.zeros((1, nn_hdim))
- W2 = np.random.randn(nn_hdim, nn_output_dim) / np.sqrt(nn_hdim)
- b2 = np.zeros((1, nn_output_dim))
-
- # This is what we return at the end
- model = {}
-
- # Gradient descent. For each batch...
- for i in range(0, num_passes):
-
- # Forward propagation
- z1 = X.dot(W1) + b1
- a1 = np.tanh(z1)
- z2 = a1.dot(W2) + b2
- exp_scores = np.exp(z2)
- probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True)
-
- # Backpropagation
- delta3 = probs
- delta3[range(num_examples), y] -= 1
- dW2 = (a1.T).dot(delta3)
- db2 = np.sum(delta3, axis=0, keepdims=True)
- delta2 = delta3.dot(W2.T) * (1 - np.power(a1, 2))
- dW1 = np.dot(X.T, delta2)
- db1 = np.sum(delta2, axis=0)
-
- # Add regularization terms (b1 and b2 don't have regularization terms)
- dW2 += reg_lambda * W2
- dW1 += reg_lambda * W1
-
- # Gradient descent parameter update
- W1 += -epsilon * dW1
- b1 += -epsilon * db1
- W2 += -epsilon * dW2
- b2 += -epsilon * db2
-
- # Assign new parameters to the model
- model = { 'W1': W1, 'b1': b1, 'W2': W2, 'b2': b2}
-
- # Optionally print the loss.
- # This is expensive because it uses the whole dataset, so we don't want to do it too often.
- if print_loss and i % 1000 == 0:
- print("Loss after iteration %i: %f" %(i, calculate_loss(model)))
-
- return model
-
- # %% 17
- # Build a model with a 3-dimensional hidden layer
- model = build_model(3, print_loss=True)
-
- # Plot the decision boundary
- plot_decision_boundary(lambda x: predict(model, x))
- plt.title("Decision Boundary for hidden layer size 3")
-
- # %% 14
- plt.figure(figsize=(16, 32))
- hidden_layer_dimensions = [1, 2, 3, 4, 5, 20, 50]
- for i, nn_hdim in enumerate(hidden_layer_dimensions):
- plt.subplot(5, 2, i+1)
- plt.title('Hidden Layer size %d' % nn_hdim)
- model = build_model(nn_hdim)
- plot_decision_boundary(lambda x: predict(model, x))
- plt.show()
|