|
-
- import torch as t
- import torch.nn as nn
- import torch.nn.functional as F
- from torch import optim
- from torch.autograd import Variable
-
- import torchvision as tv
- import torchvision.transforms as transforms
- from torchvision.transforms import ToPILImage
-
- show = ToPILImage() # 可以把Tensor转成Image,方便可视化
-
- # 第一次运行程序torchvision会自动下载CIFAR-10数据集,
- # 大约100M,需花费一定的时间,
- # 如果已经下载有CIFAR-10,可通过root参数指定
-
- # 定义对数据的预处理
- transform = transforms.Compose([
- transforms.ToTensor(), # 转为Tensor
- transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), # 归一化
- ])
-
- # 训练集
- dataset_path = "../data"
- trainset = tv.datasets.CIFAR10(
- root=dataset_path, train=True, download=True, transform=transform)
-
- trainloader = t.utils.data.DataLoader(
- trainset,
- batch_size=4,
- shuffle=True,
- num_workers=2)
-
- # 测试集
- testset = tv.datasets.CIFAR10(
- root=dataset_path, train=False, download=True, transform=transform)
-
- testloader = t.utils.data.DataLoader(
- testset,
- batch_size=4,
- shuffle=False,
- num_workers=2)
-
- classes = ('plane', 'car', 'bird', 'cat', 'deer',
- 'dog', 'frog', 'horse', 'ship', 'truck')
-
-
- # Define the network
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(3, 6, 5)
- self.conv2 = nn.Conv2d(6, 16, 5)
- self.fc1 = nn.Linear(16*5*5, 120)
- self.fc2 = nn.Linear(120, 84)
- self.fc3 = nn.Linear(84, 10)
-
- def forward(self, x):
- x = F.max_pool2d(F.relu(self.conv1(x)), (2, 2))
- x = F.max_pool2d(F.relu(self.conv2(x)), 2)
- x = x.view(x.size()[0], -1)
- x = F.relu(self.fc1(x))
- x = F.relu(self.fc2(x))
- x = self.fc3(x)
- return x
-
-
- net = Net()
- print(net)
-
- criterion = nn.CrossEntropyLoss()
- optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
-
- t.set_num_threads(8)
- for epoch in range(2):
-
- running_loss = 0.0
- for i, data in enumerate(trainloader, 0):
-
- # 输入数据
- inputs, labels = data
- inputs, labels = Variable(inputs), Variable(labels)
-
- # 梯度清零
- optimizer.zero_grad()
-
- # forward + backward
- outputs = net(inputs)
- loss = criterion(outputs, labels)
- loss.backward()
-
- # 更新参数
- optimizer.step()
-
- # 打印log信息
- running_loss += loss.data[0]
- if i % 2000 == 1999: # 每2000个batch打印一下训练状态
- print('[%d, %5d] loss: %.3f' \
- % (epoch + 1, i + 1, running_loss / 2000))
- running_loss = 0.0
- print('Finished Training')
-
- dataiter = iter(testloader)
- images, labels = dataiter.next() # 一个batch返回4张图片
- print('实际的label: ', ' '.join(\
- '%08s'%classes[labels[j]] for j in range(4)))
- show(tv.utils.make_grid(images / 2 - 0.5)).resize((400,100))
-
-
- # 计算图片在每个类别上的分数
- outputs = net(Variable(images))
- # 得分最高的那个类
- _, predicted = t.max(outputs.data, 1)
-
- print('预测结果: ', ' '.join('%5s'\
- % classes[predicted[j]] for j in range(4)))
-
-
- correct = 0 # 预测正确的图片数
- total = 0 # 总共的图片数
- for data in testloader:
- images, labels = data
- outputs = net(Variable(images))
- _, predicted = t.max(outputs.data, 1)
- total += labels.size(0)
- correct += (predicted == labels).sum()
-
- print('10000张测试集中的准确率为: %d %%' % (100 * correct / total))
|