可以自行在下属列表找找到适合自己的学习资料,虽然罗列的比较多,但是个人最好选择一个深入阅读、练习。当练习到一定程度,可以再看看其他的资料,这样弥补单一学习资料可能存在的欠缺。
列表等在 https://gitee.com/pi-lab/pilab_research_fields/blob/master/references/ML_References.md
CNN 可视化工具 https://m.toutiaocdn.com/group/6822123587156050435
打标签工具
一款图像转卡通的Python项目,超级值得你练手
Machine learning project ideas
Titanic: notebooks/data-science-ipython-notebooks/kaggle/titanic.ipynb
使用神经网络解决拼图游戏 https://www.toutiao.com/a6855437347463365133/
Programming Multiclass Logistic Regression
notebooks/MachineLearningNotebooks/05.%20Logistic%20Regression.ipynb
Equation for MLP
notebooks/MachineLearningNotebooks/07.%20MLP%20Neural%20Networks.ipynb
Optimization methods
notebooks/MachineLearningNotebooks/06.%20Optimization.ipynb
evaluation metrics
http://localhost:8889/notebooks/machineLearning/10_digits_classification.ipynb
model selection and assessment
http://localhost:8889/notebooks/machineLearning/notebooks/01%20-%20Model%20Selection%20and%20Assessment.ipynb
神经网络——梯度下降&反向传播 https://blog.csdn.net/skullfang/article/details/78634317
零基础入门深度学习(3) - 神经网络和反向传播算法 https://www.zybuluo.com/hanbingtao/note/476663
如何直观地解释 backpropagation 算法? https://www.zhihu.com/question/27239198
一文弄懂神经网络中的反向传播法——BackPropagation https://www.cnblogs.com/charlotte77/p/5629865.html
https://medium.com/@UdacityINDIA/how-to-build-your-first-neural-network-with-python-6819c7f65dbf
https://www.python-course.eu/neural_networks_with_python_numpy.php