You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_tensorflow_parser.cc 94 kB

3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
3 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391
  1. /**
  2. * Copyright 2019-2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <gtest/gtest.h>
  17. #define protected public
  18. #define private public
  19. #include "parser/common/op_parser_factory.h"
  20. #include "parser/tensorflow/tensorflow_parser.h"
  21. #include "graph/operator_reg.h"
  22. #include "register/op_registry.h"
  23. #include "external/register/register.h"
  24. #include "parser/common/register_tbe.h"
  25. #include "st/parser_st_utils.h"
  26. #include "tests/depends/ops_stub/ops_stub.h"
  27. #include "parser/common/acl_graph_parser_util.h"
  28. #include "metadef/third_party/graphengine/inc/external/ge/ge_api_types.h"
  29. #include "omg/parser/parser_factory.h"
  30. #include "common/pre_checker.h"
  31. #include "common/util.h"
  32. #include "external/parser/tensorflow_parser.h"
  33. #include "parser/tensorflow/tensorflow_constant_parser.h"
  34. #include "common/types.h"
  35. #include "parser/common/op_def/variable_op.h"
  36. #include "parser/tensorflow/tensorflow_ref_switch_parser.h"
  37. #include "parser/tensorflow/tensorflow_fusion_op_parser.h"
  38. #include "parser/tensorflow/tensorflow_auto_mapping_parser_adapter.h"
  39. #include "parser/common/op_def/arg_op.h"
  40. #include "parser/tensorflow/tensorflow_fusion_custom_parser_adapter.h"
  41. #include "parser/tensorflow/tensorflow_reshape_parser.h"
  42. #include "parser/tensorflow/tensorflow_custom_parser_adapter.h"
  43. #include "parser/tensorflow/tensorflow_squeeze_parser.h"
  44. #include "parser/tensorflow/graph_functiondef.h"
  45. #include "parser/tensorflow/graph_optimizer.h"
  46. #include "cce/dnn_base_def.hpp"
  47. #undef protected
  48. #undef private
  49. using namespace std;
  50. using namespace domi::tensorflow;
  51. using namespace domi;
  52. using namespace cce;
  53. using namespace testing;
  54. using namespace std;
  55. using namespace google::protobuf;
  56. static const string GRAPH_DEFAULT_NAME = "default";
  57. namespace ge {
  58. class STestTensorflowParser : public testing::Test {
  59. protected:
  60. void SetUp() {
  61. ParerSTestsUtils::ClearParserInnerCtx();
  62. }
  63. void TearDown() {}
  64. public:
  65. void RegisterCustomOp();
  66. };
  67. static Status ParseParams(const google::protobuf::Message* op_src, ge::Operator& op_dest) {
  68. return SUCCESS;
  69. }
  70. static Status ParseParamByOpFunc(const ge::Operator &op_src, ge::Operator& op_dest) {
  71. return SUCCESS;
  72. }
  73. void STestTensorflowParser::RegisterCustomOp() {
  74. REGISTER_CUSTOM_OP("Add")
  75. .FrameworkType(domi::TENSORFLOW)
  76. .OriginOpType("Add")
  77. .ParseParamsFn(ParseParams);
  78. std::vector<OpRegistrationData> reg_datas = domi::OpRegistry::Instance()->registrationDatas;
  79. for (auto reg_data : reg_datas) {
  80. OpRegistrationTbe::Instance()->Finalize(reg_data);
  81. domi::OpRegistry::Instance()->Register(reg_data);
  82. }
  83. domi::OpRegistry::Instance()->registrationDatas.clear();
  84. }
  85. namespace {
  86. NodeDef* AddNode(GraphDef& graph, string type, string name)
  87. {
  88. NodeDef* nodeDef = graph.add_node();
  89. nodeDef->set_op(type);
  90. nodeDef->set_name(name);
  91. tensorflow::OpDef op_def;
  92. string op_def_string;
  93. op_def.SerializeToString(&op_def_string);
  94. tensorflow::AttrValue value;
  95. value.set_s(op_def_string);
  96. nodeDef->mutable_attr()->insert({"op_def", value});
  97. return nodeDef;
  98. }
  99. void AddInput(NodeDef* src, NodeDef* dst, int srcIndex)
  100. {
  101. if(srcIndex == -1){
  102. dst->add_input("^"+src->name());
  103. } else {
  104. if (srcIndex == 0) {
  105. dst->add_input(src->name());
  106. } else {
  107. dst->add_input(src->name() + ":" + std::to_string(srcIndex));
  108. }
  109. {
  110. auto input = (*dst->mutable_attr())[ge::ATTR_NAME_INPUT_TENSOR_DESC].mutable_list()->add_func();
  111. tensorflow::AttrValue val1;
  112. val1.set_i(0);
  113. (*input->mutable_attr())["serialize_format"] = val1;
  114. tensorflow::AttrValue val2;
  115. val2.set_i(tensorflow::DT_FLOAT);
  116. (*input->mutable_attr())["serialize_datatype"] = val2;
  117. tensorflow::AttrValue val3;
  118. val3.mutable_list()->add_i(10);
  119. (*input->mutable_attr())["serialize_shape"] = val3;
  120. }
  121. {
  122. auto output = (*src->mutable_attr())[ge::ATTR_NAME_OUTPUT_TENSOR_DESC].mutable_list()->add_func();
  123. tensorflow::AttrValue val1;
  124. val1.set_i(0);
  125. (*output->mutable_attr())["serialize_format"] = val1;
  126. tensorflow::AttrValue val2;
  127. val2.set_i(tensorflow::DT_FLOAT);
  128. (*output->mutable_attr())["serialize_datatype"] = val2;
  129. tensorflow::AttrValue val3;
  130. val3.mutable_list()->add_i(10);
  131. (*output->mutable_attr())["serialize_shape"] = val3;
  132. }
  133. }
  134. }
  135. NodeDef *initNodeDef()
  136. {
  137. NodeDef * nodeDef = new NodeDef();
  138. nodeDef->set_op("Const");
  139. ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = nodeDef->mutable_attr();
  140. //设置 T属性
  141. domi::tensorflow::AttrValue t_attr_value;
  142. t_attr_value.set_type(domi::tensorflow::DT_INT32);
  143. (*node_attr_map)[TENSORFLOW_ATTR_T] = t_attr_value;
  144. domi::tensorflow::AttrValue dtype_attr_value;
  145. dtype_attr_value.set_type(domi::tensorflow::DT_INT32);
  146. (*node_attr_map)[TENSORFLOW_ATTR_DTYPE] = dtype_attr_value;
  147. // out_put
  148. domi::tensorflow::AttrValue outputs_attr_value;
  149. ::tensorflow::AttrValue_ListValue* list = outputs_attr_value.mutable_list();
  150. list->add_s("MatMul");
  151. (*node_attr_map)[TENSORFLOW_ATTR_OUTPUT_OP] = outputs_attr_value;
  152. // 设置 tensor 属性
  153. domi::tensorflow::AttrValue value_attr_value;
  154. tensorflow::TensorProto* tensor = value_attr_value.mutable_tensor();
  155. tensorflow::TensorShapeProto* tensor_shape = tensor->mutable_tensor_shape();
  156. tensor_shape->clear_dim();
  157. tensor_shape->add_dim()->set_size(4);
  158. tensor_shape->add_dim()->set_size(6);
  159. tensor->set_dtype(domi::tensorflow::DT_INT32);
  160. float *addr = new float[24];
  161. for (int32_t i = 0; i < 24; i++) {
  162. *(addr + i) = 1.0 + i;
  163. }
  164. tensor->set_tensor_content((void *)addr, 24 * sizeof(float));
  165. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  166. delete[] addr;
  167. return nodeDef;
  168. }
  169. NodeDef * initOpNodeDef_VariableV2()
  170. {
  171. NodeDef * nodeDef = new NodeDef();
  172. nodeDef->set_op("VariableV2");
  173. google::protobuf::Map<std::string, tensorflow::AttrValue > *node_attr_map = nodeDef->mutable_attr();
  174. //设置data_format属性
  175. domi::tensorflow::AttrValue format_attr_value;
  176. format_attr_value.set_s("_FZ");
  177. (*node_attr_map)[VAR_ATTR_FORMAT] = format_attr_value;
  178. domi::tensorflow::AttrValue type_attr;
  179. type_attr.set_type(domi::tensorflow::DT_FLOAT);
  180. (*node_attr_map)[VAR_ATTR_DTYPE] = type_attr;
  181. domi::tensorflow::AttrValue container_attr_value;
  182. container_attr_value.set_s("container");
  183. (*node_attr_map)[VAR_ATTR_CONTAINER] = container_attr_value;
  184. domi::tensorflow::AttrValue shard_name_attr_value;
  185. shard_name_attr_value.set_s("shard_name");
  186. (*node_attr_map)[VAR_ATTR_SHARED_NAME] = shard_name_attr_value;
  187. domi::tensorflow::AttrValue shape_attr_value;
  188. shape_attr_value.mutable_shape()->add_dim()->set_size(1);
  189. shape_attr_value.mutable_shape()->add_dim()->set_size(2);
  190. shape_attr_value.mutable_shape()->add_dim()->set_size(3);
  191. shape_attr_value.mutable_shape()->add_dim()->set_size(4);
  192. (*node_attr_map)[ge::VAR_ATTR_SHAPE] = shape_attr_value;
  193. domi::tensorflow::AttrValue shape;
  194. shape.mutable_list()->add_i((int64)32);
  195. shape.mutable_list()->add_i((int64)32);
  196. shape.mutable_list()->add_i((int64)14);
  197. shape.mutable_list()->add_i((int64)14);
  198. //设置data_format属性
  199. domi::tensorflow::AttrValue df_attr_value;
  200. domi::tensorflow::AttrValue df_attr_value2;
  201. df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
  202. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  203. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
  204. //设置padding属性
  205. domi::tensorflow::AttrValue pad_attr_value;
  206. domi::tensorflow::AttrValue pad_attr_value2;
  207. pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
  208. (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
  209. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  210. domi::tensorflow::NameAttrList name_attr_list;
  211. name_attr_list.set_name(std::to_string(0));
  212. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  213. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  214. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  215. domi::tensorflow::AttrValue output_tensor_descs;
  216. *(output_tensor_descs.mutable_list()->add_func()) = name_attr_list;
  217. nodeDef->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, output_tensor_descs});
  218. return nodeDef;
  219. }
  220. NodeDef *initOpNodeDef_TemporaryVariable()
  221. {
  222. NodeDef * nodeDef = new NodeDef();
  223. nodeDef->set_op("TemporaryVariable");
  224. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
  225. //设置dtype属性
  226. domi::tensorflow::AttrValue type_attr;
  227. type_attr.set_type(domi::tensorflow::DT_FLOAT);
  228. (*node_attr_map)[VAR_ATTR_DTYPE] = type_attr;
  229. //设置var_name属性
  230. domi::tensorflow::AttrValue var_name_attr_value;
  231. var_name_attr_value.set_s("temporary_variable_name");
  232. (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
  233. //设置shape属性
  234. domi::tensorflow::AttrValue shape_attr_value;
  235. shape_attr_value.mutable_shape()->add_dim()->set_size(1);
  236. shape_attr_value.mutable_shape()->add_dim()->set_size(2);
  237. shape_attr_value.mutable_shape()->add_dim()->set_size(3);
  238. shape_attr_value.mutable_shape()->add_dim()->set_size(4);
  239. (*node_attr_map)[ge::VAR_ATTR_SHAPE] = shape_attr_value;
  240. domi::tensorflow::AttrValue shape;
  241. shape.mutable_list()->add_i((int64)32);
  242. shape.mutable_list()->add_i((int64)32);
  243. shape.mutable_list()->add_i((int64)14);
  244. shape.mutable_list()->add_i((int64)14);
  245. //设置data_format属性
  246. domi::tensorflow::AttrValue df_attr_value2;
  247. df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
  248. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
  249. domi::tensorflow::AttrValue df_attr_value;
  250. df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  251. //设置padding属性
  252. domi::tensorflow::AttrValue pad_attr_value2;
  253. pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
  254. (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
  255. domi::tensorflow::AttrValue pad_attr_value;
  256. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  257. domi::tensorflow::NameAttrList name_attr_list;
  258. name_attr_list.set_name(std::to_string(0));
  259. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  260. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  261. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  262. domi::tensorflow::AttrValue output_tensor_descs;
  263. *(output_tensor_descs.mutable_list()->add_func()) = name_attr_list;
  264. nodeDef->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, output_tensor_descs});
  265. return nodeDef;
  266. }
  267. NodeDef *fusioninitNodeDef(int index)
  268. {
  269. NodeDef * nodeDef = new NodeDef();
  270. ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = nodeDef->mutable_attr();
  271. //设置 type属性
  272. domi::tensorflow::AttrValue dtype_attr_value ;
  273. if (index == 0) {
  274. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  275. } else if (index == 1) {
  276. dtype_attr_value.set_type(domi::tensorflow::DT_INT32);
  277. } else if (index == 2) {
  278. dtype_attr_value.set_type(tensorflow::DT_HALF);
  279. }
  280. (*node_attr_map)[ge::TENSORFLOW_ATTR_DTYPE] = dtype_attr_value;
  281. //设置data_format属性
  282. domi::tensorflow::AttrValue df_attr_value;
  283. df_attr_value.set_s(TENSORFLOWF_TENSOR_NCHW);
  284. (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value;
  285. // 设置 tensor 属性
  286. domi::tensorflow::AttrValue value_attr_value;
  287. ::tensorflow::TensorProto* tensor = value_attr_value.mutable_tensor();
  288. ::tensorflow::TensorShapeProto* tensor_shape = tensor->mutable_tensor_shape();
  289. tensor_shape->clear_dim();
  290. ::tensorflow::TensorShapeProto_Dim* dim = tensor_shape->add_dim();
  291. dim->set_name("tensor dim");
  292. dim->set_size(1);
  293. if (index == 0) {
  294. tensor->set_dtype(domi::tensorflow::DT_FLOAT);
  295. float *addr = new float[1];
  296. *addr = 1.0;
  297. tensor->set_tensor_content((void *)addr, sizeof(float));
  298. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  299. delete[] addr;
  300. } else if (index == 1) {
  301. tensor->set_dtype(domi::tensorflow::DT_INT32);
  302. int32_t *addr = new int32_t[1];
  303. *addr = 1;
  304. tensor->set_tensor_content((void *)addr, sizeof(int32_t));
  305. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  306. delete[] addr;
  307. } else if (index == 2) {
  308. tensor->set_dtype(tensorflow::DT_HALF);
  309. tensor->add_half_val(1);
  310. (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
  311. }
  312. return nodeDef;
  313. }
  314. NodeDef *MallocNodeDef(const string &name, const string &type) {
  315. NodeDef* node_def = new (std::nothrow) NodeDef();
  316. if (node_def != nullptr) {
  317. node_def->set_name(name);
  318. node_def->set_op(type);
  319. }
  320. return node_def;
  321. }
  322. void GenOriginNodeDef(ge::TensorFlowModelParser *tensorflow_parser, vector<string> &node_name_list) {
  323. NodeDef* pre_node_a = MallocNodeDef("pre_node_a", "Const");
  324. EXPECT_NE(pre_node_a, nullptr);
  325. {
  326. ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_a->mutable_attr();
  327. tensorflow::AttrValue attr_dtype;
  328. attr_dtype.set_type(tensorflow::DT_FLOAT);
  329. (*node_attr_map)["dtype"] = attr_dtype;
  330. tensorflow::AttrValue attr_value;
  331. tensorflow::TensorProto* tensor = attr_value.mutable_tensor();
  332. tensor->add_bool_val(true);
  333. tensor->set_dtype(tensorflow::DT_BOOL);
  334. (*node_attr_map)["value"] = attr_value;
  335. }
  336. tensorflow_parser->nodedef_map_["pre_node_a"] = pre_node_a;
  337. node_name_list.push_back("pre_node_a");
  338. NodeDef* pre_node_ctrl_in = MallocNodeDef("pre_node_ctrl_in", "Const");
  339. EXPECT_NE(pre_node_ctrl_in, nullptr);
  340. {
  341. ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_ctrl_in->mutable_attr();
  342. tensorflow::AttrValue attr_dtype;
  343. attr_dtype.set_type(tensorflow::DT_FLOAT);
  344. (*node_attr_map)["dtype"] = attr_dtype;
  345. tensorflow::AttrValue attr_value;
  346. tensorflow::TensorProto* tensor = attr_value.mutable_tensor();
  347. tensor->add_bool_val(true);
  348. tensor->set_dtype(tensorflow::DT_BOOL);
  349. (*node_attr_map)["value"] = attr_value;
  350. }
  351. tensorflow_parser->nodedef_map_["pre_node_ctrl_in"] = pre_node_ctrl_in;
  352. node_name_list.push_back("pre_node_ctrl_in");
  353. NodeDef* post_node_b = MallocNodeDef("post_node_b", "Identity");
  354. EXPECT_NE(post_node_b, nullptr);
  355. tensorflow_parser->nodedef_map_["post_node_b"] = post_node_b;
  356. node_name_list.push_back("post_node_b");
  357. NodeDef* post_node_c = MallocNodeDef("post_node_c", "Identity");
  358. EXPECT_NE(post_node_c, nullptr);
  359. tensorflow_parser->nodedef_map_["post_node_c"] = post_node_c;
  360. node_name_list.push_back("post_node_c");
  361. NodeDef* post_node_d = MallocNodeDef("post_node_d", "Identity");
  362. EXPECT_NE(post_node_d, nullptr);
  363. tensorflow_parser->nodedef_map_["post_node_d"] = post_node_d;
  364. node_name_list.push_back("post_node_d");
  365. }
  366. void FreeNodeDefMap(ge::TensorFlowModelParser *tensorflow_parser, set<string> &malloc_node_name_list) {
  367. for (auto &item : tensorflow_parser->nodedef_map_) {
  368. if (item.second != nullptr && malloc_node_name_list.count(item.first) > 0) {
  369. delete (item.second);
  370. item.second = nullptr;
  371. }
  372. }
  373. }
  374. void GenFusionScopesResult(shared_ptr<ScopeGraph> &scope_graph, FusionScopesResult *fusion_rlt,
  375. const string &fusion_op_name) {
  376. if (fusion_rlt == nullptr) {
  377. return;
  378. }
  379. fusion_rlt->InsertInputs("scope_node_1", {0}); // scope input 0
  380. fusion_rlt->InsertOutputs("scope_node_m", {0}); // scope output 0
  381. fusion_rlt->InsertOutputs("scope_node_n", {1}); // scope output 1
  382. fusion_rlt->SetType(ge::kScopeToMultiNodes);
  383. fusion_rlt->SetName(fusion_op_name);
  384. fusion_rlt->SetDescription("Description for fusion node");
  385. // Add inner nodes in sequence.
  386. auto node1 = fusion_rlt->AddInnerNode("inner_node_1", "Unique"); // add inner node1
  387. CHECK_INNER_NODE_CONDITION(node1 != nullptr, fusion_rlt);
  388. auto ret = node1
  389. ->InsertInput(ge::kInputFromFusionScope, 0) // Input from 0th of boundary (a)
  390. .InsertOutput(ge::kOutputToFusionScope, 0) // Output to 0th of boundary (b)
  391. .InsertOutput("inner_node_2", 0) // Output to input 0th of internal node 2
  392. .BuildInnerNode(); // Construct an internal Operator
  393. CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
  394. string str_val = "This is a string.";
  395. node1->MutableOperator()->SetAttr("key1", 2); // Set integer attribute
  396. node1->MutableOperator()->SetAttr("key2", str_val); // Set the string attribute
  397. node1->MutableOperator()->SetAttr("key3", true); // Set boolean attribute
  398. auto node2 = fusion_rlt->AddInnerNode("inner_node_2", "Identity"); // add inner node2
  399. CHECK_INNER_NODE_CONDITION(node2 != nullptr, fusion_rlt);
  400. ret = node2
  401. ->InsertInput("inner_node_1", 1) // The input comes from the 1st output of internal node 1
  402. .InsertOutput("inner_node_3", 0) // Output to input 0th of internal node 3
  403. .BuildInnerNode();
  404. CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
  405. node2->SetInputFormat("x", "NHWC");
  406. node2->SetOutputFormat("y", "NHWC");
  407. auto node3 = fusion_rlt->AddInnerNode("inner_node_3", "Identity"); // add inner node3
  408. CHECK_INNER_NODE_CONDITION(node3 != nullptr, fusion_rlt);
  409. ret = node3
  410. ->InsertInput("inner_node_2", 0) // The input comes from the 0th output of internal node 2
  411. .InsertOutput(ge::kOutputToFusionScope, 1) // Output to 1st of boundary (c)
  412. .BuildInnerNode();
  413. CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
  414. scope_graph->impl_->AddFusionScopesResult(fusion_rlt);
  415. }
  416. void GenOriginContext(ge::TensorFlowModelParser *tensorflow_parser, const string &fusion_op_name) {
  417. // op_node_context for fusion op
  418. ge::OpNodeContext op_node_context;
  419. op_node_context.input_map["pre_node_a"].push_back({0, 0});
  420. op_node_context.input_map["pre_node_ctrl_in"].push_back({-1, -1}); // ctrl edges
  421. op_node_context.output_map["post_node_b"].push_back({0, 0});
  422. op_node_context.output_map["post_node_c"].push_back({1, 0});
  423. op_node_context.output_map["post_node_d"].push_back({-1, -1});
  424. op_node_context.output_map["_Retval"].push_back({0, 1});
  425. // ctrl edges
  426. tensorflow_parser->op_node_context_map_[fusion_op_name] = op_node_context;
  427. tensorflow_parser->SaveEdgesControlInfo(fusion_op_name, -1);
  428. // op_node_context for pre_node_a
  429. ge::OpNodeContext op_node_context_a;
  430. op_node_context_a.output_map[fusion_op_name].push_back({0, 0});
  431. tensorflow_parser->op_node_context_map_["pre_node_a"] = op_node_context_a;
  432. // op_node_context for pre_node_ctrl_in
  433. ge::OpNodeContext op_node_context_ctrl_in;
  434. op_node_context_ctrl_in.output_map[fusion_op_name].push_back({-1, -1}); // ctrl edges
  435. tensorflow_parser->op_node_context_map_["pre_node_ctrl_in"] = op_node_context_ctrl_in;
  436. // op_node_context for post_node_b
  437. ge::OpNodeContext op_node_context_b;
  438. op_node_context_b.input_map[fusion_op_name].push_back({0, 0});
  439. tensorflow_parser->op_node_context_map_["post_node_b"] = op_node_context_b;
  440. // op_node_context for post_node_c
  441. ge::OpNodeContext op_node_context_c;
  442. op_node_context_c.output_map["post_node_d"].push_back({0, 0});
  443. tensorflow_parser->op_node_context_map_["post_node_c"] = op_node_context_c;
  444. // op_node_context for post_node_d
  445. ge::OpNodeContext op_node_context_d;
  446. op_node_context_d.input_map[fusion_op_name].push_back({-1, -1}); // ctrl edges
  447. tensorflow_parser->op_node_context_map_["post_node_d"] = op_node_context_d;
  448. // op_node_context for Retval
  449. ge::OpNodeContext op_node_context_Retval;
  450. op_node_context_d.input_map["post_node_d"].push_back({-1, -1});
  451. op_node_context_c.output_map["fusion_op_name"].push_back({0,1});
  452. tensorflow_parser->op_node_context_map_["_Retval"] = op_node_context_Retval;
  453. tensorflow_parser->SaveEdgesControlInfo("op_node_context_Retval", -1);
  454. string fusion_op_type = ge::kScopeToMultiNodes;
  455. string description = "fusion op description";
  456. tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type);
  457. tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(description);
  458. }
  459. void register_tbe_op() {
  460. std::vector<OpRegistrationData> registrationDatas = OpRegistry::Instance()->registrationDatas;
  461. for (OpRegistrationData reg_data : registrationDatas) {
  462. OpRegistrationTbe::Instance()->Finalize(reg_data);
  463. OpRegistry::Instance()->Register(reg_data);
  464. }
  465. OpRegistry::Instance()->registrationDatas.clear();
  466. }
  467. NodeDef *initNodeDef_axis_dims() {
  468. NodeDef *nodeDef = new NodeDef();
  469. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
  470. //设置T属性
  471. domi::tensorflow::AttrValue dtype_attr_value ;
  472. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  473. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  474. //设置strides属性
  475. domi::tensorflow::AttrValue axis_attr_value;
  476. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  477. list->add_i(1);
  478. list->add_i(2);
  479. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  480. (*node_attr_map)[ge::SQUEEZE_ATTR_DIMS] = axis_attr_value;
  481. return nodeDef;
  482. }
  483. NodeDef *initNodeDef_dims() {
  484. NodeDef *nodeDef = new NodeDef();
  485. ::google::protobuf::Map<std::string, tensorflow::AttrValue > *node_attr_map = nodeDef->mutable_attr();
  486. //设置T属性
  487. domi::tensorflow::AttrValue dtype_attr_value ;
  488. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  489. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  490. //设置strides属性
  491. domi::tensorflow::AttrValue axis_attr_value;
  492. ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
  493. list->add_i(1);
  494. list->add_i(2);
  495. (*node_attr_map)[ge::SQUEEZE_ATTR_DIMS] = axis_attr_value;
  496. return nodeDef;
  497. }
  498. void CreateOpDef(const string& _name, const string& _type, ge::OpDescPtr opDef) {
  499. tensorflow::OpDef tsOpDef;
  500. tsOpDef.set_name(_name);
  501. tensorflow::OpDef_ArgDef* outArgDef = tsOpDef.add_output_arg();
  502. outArgDef->set_name(_name);
  503. outArgDef->set_description("outArgDef");
  504. outArgDef->set_type((tensorflow::DataType)3);
  505. if ((_name == "A") || (_name == "B")) {
  506. tensorflow::OpDef_ArgDef* argDef1 = tsOpDef.add_output_arg();
  507. string name = _name+"t";
  508. argDef1->set_name(name);
  509. argDef1->set_description("this is a test 2");
  510. argDef1->set_type((tensorflow::DataType)3);
  511. }
  512. if ((_name == "C") ) {
  513. outArgDef->set_number_attr("num");
  514. }
  515. if ((_name == "D") ) {
  516. outArgDef->set_type_list_attr("type_list");
  517. }
  518. string strTsOpDef;
  519. tsOpDef.SerializeToString(&strTsOpDef);
  520. ge::AttrUtils::SetStr(opDef, "op_def", strTsOpDef);
  521. tensorflow::NodeDef nodedef;
  522. nodedef.set_name(_name);
  523. nodedef.set_op(_name);
  524. string name("op_def");
  525. tensorflow::AttrValue value;
  526. value.set_s(strTsOpDef);
  527. TensorFlowUtil::AddNodeAttr(name, value, &nodedef);
  528. value.set_i(1);
  529. TensorFlowUtil::AddNodeAttr("num", value, &nodedef);
  530. value.mutable_list();
  531. TensorFlowUtil::AddNodeAttr("type_list", value, &nodedef);
  532. string strNodeDef;
  533. nodedef.SerializeToString(&strNodeDef);
  534. ge::GeAttrValue::BYTES nodedefBytes;
  535. nodedefBytes = ge::GeAttrValue::BYTES::CopyFrom((uint8_t*)strNodeDef.data(), strNodeDef.length());
  536. ge::AttrUtils::SetBytes(opDef, "node_def", nodedefBytes);
  537. if ((_name== "S") || (_name == "K")) {
  538. int index = 0;
  539. ge::AttrUtils::SetInt(opDef, "T", 1);
  540. ge::AttrUtils::SetInt(opDef, "arg_index", index);
  541. ge::AttrUtils::SetInt(opDef, "ret_index", index);
  542. }
  543. }
  544. ge::NodePtr AddNode(ge::ComputeGraphPtr graph, const string& _name, const string& _type,int32_t i_n, int32_t o_n) {
  545. ge::OpDescPtr opDef = std::make_shared<ge::OpDesc>();
  546. opDef->SetName(_name);
  547. opDef->SetType(_type);
  548. for(int32_t i = 0; i < i_n; i++) {
  549. ge::GeTensorDesc input;
  550. input.SetDataType((ge::DataType)1);
  551. opDef->AddInputDesc(input);
  552. }
  553. for(int32_t i = 0;i < o_n; i++) {
  554. ge::GeTensorDesc output;
  555. output.SetDataType((ge::DataType)1);
  556. opDef->AddOutputDesc(output);
  557. }
  558. CreateOpDef(_name, _type, opDef);
  559. return graph->AddNode(opDef);
  560. }
  561. void MakeDagGraph(ge::ComputeGraphPtr graph, const string& input_node_type) {
  562. ge::NodePtr node_s = AddNode(graph, "S", parser::DATA,1,1);
  563. ge::NodePtr node_a = AddNode(graph, "A", "testa",1,2);
  564. ge::NodePtr node_b = AddNode(graph, "B", "testb",1,2);
  565. ge::NodePtr node_c = AddNode(graph, "C", "testc",1,1);
  566. ge::NodePtr node_d = AddNode(graph, "D", "testd",1,1);
  567. ge::NodePtr node_e = AddNode(graph, "E", "teste",1,1);
  568. ge::NodePtr node_f = AddNode(graph, "F", "testf",1,1);
  569. ge::NodePtr node_g = AddNode(graph, "G", "testg",2,1);
  570. ge::NodePtr node_h = AddNode(graph, "H", "testh",1,1);
  571. ge::NodePtr node_i = AddNode(graph, "I", "testi",1,1);
  572. ge::NodePtr node_j = AddNode(graph, "J", "testj",2,1);
  573. ge::NodePtr node_k = AddNode(graph, "K", parser::NETOUTPUT,1,1);
  574. ge::GraphUtils::AddEdge(node_s->GetOutDataAnchor(0), node_a->GetInDataAnchor(0));
  575. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_b->GetInDataAnchor(0));
  576. ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(1), node_c->GetInDataAnchor(0));
  577. ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(0), node_d->GetInDataAnchor(0));
  578. ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(1), node_e->GetInDataAnchor(0));
  579. ge::GraphUtils::AddEdge(node_c->GetOutDataAnchor(0), node_g->GetInDataAnchor(0));
  580. ge::GraphUtils::AddEdge(node_d->GetOutDataAnchor(0), node_f->GetInDataAnchor(0));
  581. ge::GraphUtils::AddEdge(node_e->GetOutDataAnchor(0), node_g->GetInDataAnchor(1));
  582. ge::GraphUtils::AddEdge(node_f->GetOutDataAnchor(0), node_h->GetInDataAnchor(0));
  583. ge::GraphUtils::AddEdge(node_g->GetOutDataAnchor(0), node_j->GetInDataAnchor(0));
  584. ge::GraphUtils::AddEdge(node_h->GetOutDataAnchor(0), node_i->GetInDataAnchor(0));
  585. ge::GraphUtils::AddEdge(node_i->GetOutDataAnchor(0), node_j->GetInDataAnchor(1));
  586. ge::GraphUtils::AddEdge(node_j->GetOutDataAnchor(0), node_k->GetInDataAnchor(0));
  587. ge::GraphUtils::AddEdge(node_h->GetOutControlAnchor(), node_j->GetInControlAnchor());
  588. }
  589. void ChangeDataType(tensorflow::NodeDef* node_tf, int32_t data_type)
  590. {
  591. domi::tensorflow::AttrValue input_attr_value;
  592. google::protobuf::Map<std::string, tensorflow::AttrValue>* attr = node_tf->mutable_attr();
  593. google::protobuf::Map<std::string, tensorflow::AttrValue>::const_iterator it = attr->find(ge::ATTR_NAME_INPUT_TENSOR_DESC);
  594. if (it != attr->end()) {
  595. input_attr_value = it->second;
  596. }
  597. (*attr)[ge::ATTR_NAME_INPUT_TENSOR_DESC] = input_attr_value;
  598. }
  599. }
  600. namespace {
  601. REG_OP(Data)
  602. .INPUT(x, TensorType::ALL())
  603. .OUTPUT(y, TensorType::ALL())
  604. .ATTR(index, Int, 0)
  605. .OP_END_FACTORY_REG(Data)
  606. REG_OP(Add)
  607. .INPUT(x1, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
  608. DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
  609. DT_COMPLEX64, DT_STRING}))
  610. .INPUT(x2, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
  611. DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
  612. DT_COMPLEX64, DT_STRING}))
  613. .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
  614. DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
  615. DT_COMPLEX64, DT_STRING}))
  616. .OP_END_FACTORY_REG(Add)
  617. }
  618. static Status FusionParserParams(const std::vector<const google::protobuf::Message *> inside_nodes, ge::Operator &op) {
  619. return domi::SUCCESS;
  620. }
  621. static MemBuffer* MemBufferFromFile(const char *path)
  622. {
  623. char path_temp[PATH_MAX + 1] = {0x00};
  624. if(strlen(path) > PATH_MAX || nullptr == realpath(path, path_temp)) {
  625. return nullptr;
  626. }
  627. FILE *fp = fopen(path_temp, "r+");
  628. if (fp == nullptr) {
  629. return nullptr;
  630. }
  631. // get model file length
  632. if (0 != fseek(fp, 0, SEEK_END)) {
  633. fclose(fp);
  634. return nullptr;
  635. }
  636. long file_length = ftell(fp);
  637. if (fseek(fp, 0, SEEK_SET)) {
  638. fclose(fp);
  639. return nullptr;
  640. }
  641. if (file_length <= 0) {
  642. fclose(fp);
  643. return nullptr;
  644. }
  645. // alloc model buffer
  646. void *data = malloc((unsigned int)file_length);
  647. if (!data) {
  648. fclose(fp);
  649. return nullptr;
  650. }
  651. // read file into memory
  652. uint32_t read_size = (uint32_t)fread(data, 1, (unsigned int)file_length, fp);
  653. // check if read success
  654. if ((long)read_size != file_length) {
  655. free(data);
  656. data = nullptr;
  657. fclose(fp);
  658. return nullptr;
  659. }
  660. // close model file
  661. fclose(fp);
  662. // create an MemBuffer
  663. MemBuffer* membuf = new MemBuffer();
  664. if (!membuf) {
  665. free(data);
  666. data = nullptr;
  667. return nullptr;
  668. }
  669. membuf->data = malloc((unsigned int)read_size);
  670. // set size && data
  671. membuf->size = (uint32_t)read_size;
  672. memcpy((char*)membuf->data, (char*)data, read_size);
  673. free(data);
  674. return membuf;
  675. }
  676. /// placeholder0 placeholder1
  677. /// | /\ /\ |
  678. /// | / \/ \ |
  679. /// | / /\ \ |
  680. /// | | / \ | |
  681. /// | add0 mul0 |
  682. /// | / /c | \ |
  683. /// mul1 --- / | add1
  684. /// \ | |
  685. /// \ ---- add2 |
  686. /// | |
  687. /// retval0 retval1
  688. void CreateGraphDef(domi::tensorflow::GraphDef &graph_def) {
  689. // 1. add node
  690. auto placeholder0 = graph_def.add_node();
  691. auto placeholder1 = graph_def.add_node();
  692. auto add0 = graph_def.add_node();
  693. auto add1 = graph_def.add_node();
  694. auto mul0 = graph_def.add_node();
  695. auto mul1 = graph_def.add_node();
  696. auto add2 = graph_def.add_node();
  697. auto retval0 = graph_def.add_node();
  698. auto retval1 = graph_def.add_node();
  699. // 2. set info
  700. placeholder0->set_name("placeholder0");
  701. placeholder0->set_op("PlaceHolder");
  702. placeholder1->set_name("placeholder1");
  703. placeholder1->set_op("PlaceHolder");
  704. add0->set_name("add0");
  705. add0->set_op("Add");
  706. add1->set_name("add1");
  707. add1->set_op("Add");
  708. add2->set_name("add2");
  709. add2->set_op("Add");
  710. mul0->set_name("mul0");
  711. mul0->set_op("Mul");
  712. mul1->set_name("mul1");
  713. mul1->set_op("Mul");
  714. retval0->set_name("retval0");
  715. retval0->set_op("_RetVal");
  716. retval1->set_name("retval1");
  717. retval1->set_op("_RetVal");
  718. // 3. add edges
  719. add0->add_input("placeholder0");
  720. add0->add_input("placeholder1");
  721. mul0->add_input("placeholder0");
  722. mul0->add_input("placeholder1");
  723. mul1->add_input("placeholder0");
  724. mul1->add_input("add0");
  725. mul1->add_input("^mul0");
  726. add1->add_input("mul0");
  727. add1->add_input("placeholder1");
  728. add2->add_input("mul1");
  729. add2->add_input("mul0");
  730. retval0->add_input("add2:0");
  731. retval1->add_input("add1:0");
  732. }
  733. TEST_F(STestTensorflowParser, tensorflow_parser_success) {
  734. RegisterCustomOp();
  735. std::string case_dir = __FILE__;
  736. ParserOperator unused("Add");
  737. case_dir = case_dir.substr(0, case_dir.find_last_of("/"));
  738. std::string model_file = case_dir + "/origin_models/tf_add.pb";
  739. std::map<ge::AscendString, ge::AscendString> parser_params;
  740. ge::Graph graph;
  741. auto ret = ge::aclgrphParseTensorFlow(model_file.c_str(), parser_params, graph);
  742. ASSERT_EQ(ret, SUCCESS);
  743. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  744. auto output_nodes_info = compute_graph->GetGraphOutNodesInfo();
  745. ASSERT_EQ(output_nodes_info.size(), 1);
  746. EXPECT_EQ((output_nodes_info.at(0).first->GetName()), "add_test_1");
  747. EXPECT_EQ((output_nodes_info.at(0).second), 0);
  748. auto &net_out_name = ge::GetParserContext().net_out_nodes;
  749. ASSERT_EQ(net_out_name.size(), 1);
  750. EXPECT_EQ(net_out_name.at(0), "add_test_1:0");
  751. }
  752. TEST_F(STestTensorflowParser, tensorflow_model_Failed) {
  753. ge::Graph graph;
  754. std::string caseDir = __FILE__;
  755. std::size_t idx = caseDir.find_last_of("/");
  756. caseDir = caseDir.substr(0, idx);
  757. std::string modelFile = caseDir + "/origin_models/model.pb";
  758. auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
  759. EXPECT_EQ(status, ge::SUCCESS);
  760. modelFile = caseDir + "/origin_models/test_depth_wise_conv2d.pb";
  761. status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
  762. EXPECT_EQ(status, ge::GRAPH_FAILED);
  763. }
  764. TEST_F(STestTensorflowParser, tensorflow_model_not_exist) {
  765. ge::Graph graph;
  766. std::string caseDir = __FILE__;
  767. std::size_t idx = caseDir.find_last_of("/");
  768. caseDir = caseDir.substr(0, idx);
  769. // model file is not exist
  770. std::string modelFile = caseDir + "/origin_models/conv2d_explicit1_pad.pb";
  771. auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
  772. EXPECT_EQ(status, ge::GRAPH_FAILED);
  773. }
  774. TEST_F(STestTensorflowParser, parser_tensorflow_model) {
  775. std::string caseDir = __FILE__;
  776. std::size_t idx = caseDir.find_last_of("/");
  777. caseDir = caseDir.substr(0, idx);
  778. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  779. const char *model_file = modelFile.c_str();
  780. std::string op_name = "ge_ascend_irgraph";
  781. ge::Graph graph(op_name);
  782. std::map<ge::AscendString, ge::AscendString> parser_options = {
  783. {ge::AscendString(ge::ir_option::INPUT_FORMAT), ge::AscendString("NHWC")},
  784. };
  785. auto ret_graph = ge::aclgrphParseTensorFlow(model_file, parser_options, graph);
  786. EXPECT_EQ(ret_graph, ge::FAILED);
  787. // parser tensorflow model out_node_size is equal to index
  788. string graph_name;
  789. AclGrphParseUtil acl_graph_parse_util;
  790. std::map<AscendString, AscendString> out_nodes_with_node_and_index = {
  791. {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:1")}};
  792. ParerSTestsUtils::ClearParserInnerCtx();
  793. auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
  794. ret_graph = ge::aclgrphParseTensorFlow(model_file, graph);
  795. EXPECT_EQ(ret_graph, domi::FAILED);
  796. // parser tensorflow model success
  797. modelFile = caseDir + "/origin_models/model.pb";
  798. model_file = modelFile.c_str();
  799. out_nodes_with_node_and_index = {{AscendString(ge::ir_option::OUT_NODES), AscendString("x:0;y:0")}};
  800. ParerSTestsUtils::ClearParserInnerCtx();
  801. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
  802. ret_graph = ge::aclgrphParseTensorFlow(model_file, graph);
  803. EXPECT_EQ(ret_graph, domi::SUCCESS);
  804. }
  805. TEST_F(STestTensorflowParser, tensorflow_parser_to_json)
  806. {
  807. TensorFlowModelParser modelParser;
  808. std::string caseDir = __FILE__;
  809. std::size_t idx = caseDir.find_last_of("/");
  810. caseDir = caseDir.substr(0, idx);
  811. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  812. std::string jsonFile = caseDir + "/origin_models/test.json";
  813. const char *model_file = modelFile.c_str();
  814. const char *json_file = jsonFile.c_str();
  815. Status ret = modelParser.ToJson(model_file, json_file);
  816. EXPECT_EQ(ret, SUCCESS);
  817. }
  818. TEST_F(STestTensorflowParser, tensorflow_parserfrommemory_failed)
  819. {
  820. TensorFlowModelParser modelParser;
  821. std::string caseDir = __FILE__;
  822. std::size_t idx = caseDir.find_last_of("/");
  823. caseDir = caseDir.substr(0, idx);
  824. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  825. const char *data = modelFile.c_str();
  826. uint32_t size = 1;
  827. ge::Graph graph;
  828. std::map<ge::AscendString, ge::AscendString> parser_params;
  829. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  830. ASSERT_EQ(ret, SUCCESS);
  831. modelFile = caseDir + "/origin_models/tf_add.pb";
  832. parser_params = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
  833. ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  834. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  835. ret = modelParser.ParseFromMemory(data, size, compute_graph);
  836. EXPECT_EQ(ret, INTERNAL_ERROR);
  837. }
  838. TEST_F(STestTensorflowParser, modelparser_parsefrommemory_success)
  839. {
  840. std::string caseDir = __FILE__;
  841. std::size_t idx = caseDir.find_last_of("/");
  842. caseDir = caseDir.substr(0, idx);
  843. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  844. const char* tmp_tf_pb_model = modelFile.c_str();
  845. ge::Graph graph;
  846. std::map<ge::AscendString, ge::AscendString> parser_params;
  847. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  848. ASSERT_EQ(ret, SUCCESS);
  849. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  850. TensorFlowModelParser modelParser;
  851. MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model);
  852. PreChecker::Instance().HasError() == false;
  853. ret = modelParser.ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph);
  854. free(memBuffer->data);
  855. delete memBuffer;
  856. }
  857. TEST_F(STestTensorflowParser, weightsparser_parsefrommemory_success)
  858. {
  859. std::string caseDir = __FILE__;
  860. std::size_t idx = caseDir.find_last_of("/");
  861. caseDir = caseDir.substr(0, idx);
  862. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  863. const char* tmp_tf_pb_model = modelFile.c_str();
  864. ge::Graph graph;
  865. std::map<ge::AscendString, ge::AscendString> parser_params;
  866. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  867. ASSERT_EQ(ret, SUCCESS);
  868. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  869. auto weights_parser = domi::WeightsParserFactory::Instance()->CreateWeightsParser(domi::TENSORFLOW);
  870. MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model);
  871. ret = weights_parser->ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph);
  872. free(memBuffer->data);
  873. delete memBuffer;
  874. EXPECT_EQ(SUCCESS, ret);
  875. }
  876. std::string getGraphCallbackV2(string subgraph_name)
  877. {
  878. std::string caseDir = __FILE__;
  879. std::size_t idx = caseDir.find_last_of("/");
  880. caseDir = caseDir.substr(0, idx);
  881. subgraph_name = caseDir + "/origin_models/tf_add.pb";
  882. return subgraph_name;
  883. }
  884. TEST_F(STestTensorflowParser, parser_ParseProtoWithSubgraphV2)
  885. {
  886. std::string caseDir = __FILE__;
  887. std::size_t idx = caseDir.find_last_of("/");
  888. caseDir = caseDir.substr(0, idx);
  889. const std::string root_proto = caseDir + "/origin_models/tf_add.pb";
  890. ge::Graph graph;
  891. std::map<ge::AscendString, ge::AscendString> parser_params;
  892. Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
  893. ASSERT_EQ(ret, SUCCESS);
  894. ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
  895. domi::GetGraphCallbackV2 callback(&getGraphCallbackV2);
  896. TensorFlowModelParser parser;
  897. ret = parser.ParseProtoWithSubgraph(root_proto, callback, root_graph);
  898. }
  899. TEST_F(STestTensorflowParser, parser_ConvertToGeDataType)
  900. {
  901. // convert to ge type success
  902. const uint32_t type1 = domi::tensorflow::DataType::DT_FLOAT;
  903. TensorFlowModelParser parser;
  904. ge::DataType dataType = parser.ConvertToGeDataType(type1);
  905. ASSERT_EQ(dataType, ge::DataType::DT_FLOAT);
  906. const uint32_t type2 = 80; // invalid type
  907. dataType = parser.ConvertToGeDataType(type2);
  908. ASSERT_EQ(dataType, ge::DataType::DT_UNDEFINED);
  909. }
  910. TEST_F(STestTensorflowParser, tensorflow_ParserProto_failed)
  911. {
  912. std::string caseDir = __FILE__;
  913. std::size_t idx = caseDir.find_last_of("/");
  914. caseDir = caseDir.substr(0, idx);
  915. const std::string root_proto = caseDir + "/origin_models/avgpool3dgrad.pb.txt";
  916. domi::tensorflow::GraphDef graphDef;
  917. ge::Graph graph;
  918. std::map<ge::AscendString, ge::AscendString> parser_params;
  919. Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
  920. ASSERT_EQ(ret, SUCCESS);
  921. ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
  922. TensorFlowModelParser tensorflow_parser;
  923. ret = tensorflow_parser.ParseProto(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  924. EXPECT_EQ(PARAM_INVALID, ret);
  925. // proto解析失败
  926. bool protoRet = parser::ReadProtoFromText(root_proto.c_str(), &graphDef);
  927. ASSERT_EQ(protoRet, false);
  928. ret = tensorflow_parser.ParseProto(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  929. ASSERT_EQ(ret, PARAM_INVALID);
  930. std::string serialized_proto = "";
  931. ret = tensorflow_parser.ParseProto(serialized_proto, root_graph);
  932. ASSERT_EQ(ret, FAILED);
  933. }
  934. TEST_F(STestTensorflowParser, tensorflow_parserAllGraph_failed)
  935. {
  936. std::string caseDir = __FILE__;
  937. std::size_t idx = caseDir.find_last_of("/");
  938. caseDir = caseDir.substr(0, idx);
  939. const std::string root_proto = caseDir + "/origin_models/conv2d.pb";
  940. domi::tensorflow::GraphDef graphDef;
  941. CreateGraphDef(graphDef);
  942. auto no_op = graphDef.add_node();
  943. no_op->set_name("no_op");
  944. no_op->set_op("NoOp");
  945. no_op->add_input("placeholder0");
  946. no_op->add_input("placeholder1");
  947. ge::Graph graph;
  948. std::map<ge::AscendString, ge::AscendString> parser_params;
  949. Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
  950. ASSERT_EQ(ret, SUCCESS);
  951. ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
  952. TensorFlowModelParser tensorflow_parser;
  953. ret = tensorflow_parser.ParseAllGraph(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
  954. EXPECT_EQ(INTERNAL_ERROR, ret);
  955. }
  956. TEST_F(STestTensorflowParser, test_parse_acl_output_nodes)
  957. {
  958. AclGrphParseUtil acl_graph_parse_util;
  959. string graph_name;
  960. // case 1: Normal with 'node and index'
  961. ParerSTestsUtils::ClearParserInnerCtx();
  962. GetParserContext().type = domi::ONNX;
  963. std::map<AscendString, AscendString> out_nodes_with_node_and_index = {
  964. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1")}};
  965. ParerSTestsUtils::ClearParserInnerCtx();
  966. auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
  967. ASSERT_EQ(ret, SUCCESS);
  968. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2);
  969. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2);
  970. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0);
  971. // case 2: Normal with 'tensor name'
  972. ParerSTestsUtils::ClearParserInnerCtx();
  973. GetParserContext().type = domi::ONNX;
  974. std::map<AscendString, AscendString> out_nodes_with_tensor_name = {
  975. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2")}};
  976. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_tensor_name, graph_name);
  977. ASSERT_EQ(ret, SUCCESS);
  978. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
  979. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
  980. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2);
  981. // case 3: Failed with 'node and index' before 'tensor name'
  982. ParerSTestsUtils::ClearParserInnerCtx();
  983. GetParserContext().type = domi::ONNX;
  984. std::map<AscendString, AscendString> out_nodes_mode_mixex_pre = {
  985. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1;Out_tensor_1;Out_tensor_2")}};
  986. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_pre, graph_name);
  987. ASSERT_EQ(ret, PARAM_INVALID);
  988. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2);
  989. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2);
  990. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0);
  991. // case 4: Failed with 'node and index' inserted in 'tensor name'
  992. ParerSTestsUtils::ClearParserInnerCtx();
  993. GetParserContext().type = domi::ONNX;
  994. std::map<AscendString, AscendString> out_nodes_mode_mixex_mid = {
  995. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out1:0;Out2:1;Out_tensor_2")}};
  996. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_mid, graph_name);
  997. ASSERT_EQ(ret, PARAM_INVALID);
  998. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
  999. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
  1000. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 1);
  1001. // case 5: Failed with 'node and index' after 'tensor name'
  1002. ParerSTestsUtils::ClearParserInnerCtx();
  1003. GetParserContext().type = domi::ONNX;
  1004. std::map<AscendString, AscendString> out_nodes_mode_mixex_post = {
  1005. {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2;Out1:0;Out2:1")}};
  1006. ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_post, graph_name);
  1007. ASSERT_EQ(ret, PARAM_INVALID);
  1008. EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
  1009. EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
  1010. EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2);
  1011. }
  1012. TEST_F(STestTensorflowParser, parse_AutoMappingByOp) {
  1013. static const string KEY_STRING = "key_string";
  1014. static const string KEY_INT = "key_int";
  1015. static const string KEY_FLOAT = "key_float";
  1016. static const string KEY_BOOL = "key_bool";
  1017. static const string KEY_TYPE = "key_type";
  1018. static const string VALUE_STRING = "string";
  1019. static const int64_t VALUE_INT = 1;
  1020. static const float VALUE_FLOAT = 1.0;
  1021. static const bool VALUE_BOOL = true;
  1022. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1023. std::cout << "test data_type value_type: " << (int64_t)VALUE_TYPE << std::endl;
  1024. static const string VALUE_NAME = "test_name";
  1025. ge::OpDescPtr op_desc = std::make_shared<ge::OpDesc>();
  1026. NodeDef node_def;
  1027. domi::tensorflow::AttrValue value;
  1028. ge::Operator op = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc);
  1029. node_def.set_name(VALUE_NAME);
  1030. value.set_s(VALUE_STRING);
  1031. TensorFlowUtil::AddNodeAttr(KEY_STRING, value, &node_def);
  1032. value.set_i(VALUE_INT);
  1033. TensorFlowUtil::AddNodeAttr(KEY_INT, value, &node_def);
  1034. value.set_f(VALUE_FLOAT);
  1035. TensorFlowUtil::AddNodeAttr(KEY_FLOAT, value, &node_def);
  1036. value.set_b(VALUE_BOOL);
  1037. TensorFlowUtil::AddNodeAttr(KEY_BOOL, value, &node_def);
  1038. value.set_type(VALUE_TYPE);
  1039. TensorFlowUtil::AddNodeAttr(KEY_TYPE, value, &node_def);
  1040. domi::Status status = domi::AutoMappingFn(reinterpret_cast<google::protobuf::Message *>(&node_def), op);
  1041. EXPECT_EQ(domi::SUCCESS, status);
  1042. EXPECT_EQ(VALUE_NAME, op_desc->GetName());
  1043. string value_string = "";
  1044. ge::AttrUtils::GetStr(op_desc, KEY_STRING, value_string);
  1045. EXPECT_EQ(VALUE_STRING, value_string);
  1046. int64_t value_int = 0;
  1047. ge::AttrUtils::GetInt(op_desc, KEY_INT, value_int);
  1048. EXPECT_EQ(VALUE_INT, value_int);
  1049. float value_float = 0.0;
  1050. ge::AttrUtils::GetFloat(op_desc, KEY_FLOAT, value_float);
  1051. EXPECT_EQ(VALUE_FLOAT, value_float);
  1052. bool value_bool = false;
  1053. ge::AttrUtils::GetBool(op_desc, KEY_BOOL, value_bool);
  1054. EXPECT_EQ(VALUE_BOOL, value_bool);
  1055. ge::DataType data_type = ge::DT_UNDEFINED;
  1056. ge::AttrUtils::GetDataType(op_desc, KEY_TYPE, data_type);
  1057. EXPECT_EQ(ge::DT_FLOAT, data_type);
  1058. // test AutoMappingByOpFn
  1059. ge::OpDescPtr op_desc_dest = std::make_shared<ge::OpDesc>();
  1060. ge::Operator op_dest = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc_dest);
  1061. status = domi::AutoMappingByOpFn(op, op_dest);
  1062. EXPECT_EQ(domi::SUCCESS, status);
  1063. EXPECT_EQ(VALUE_NAME, op_dest.GetName());
  1064. value_string = "";
  1065. ge::AttrUtils::GetStr(op_desc_dest, KEY_STRING, value_string);
  1066. EXPECT_EQ(VALUE_STRING, value_string);
  1067. value_int = 0;
  1068. ge::AttrUtils::GetInt(op_desc_dest, KEY_INT, value_int);
  1069. EXPECT_EQ(VALUE_INT, value_int);
  1070. value_float = 0.0;
  1071. ge::AttrUtils::GetFloat(op_desc_dest, KEY_FLOAT, value_float);
  1072. EXPECT_EQ(VALUE_FLOAT, value_float);
  1073. value_bool = false;
  1074. ge::AttrUtils::GetBool(op_desc_dest, KEY_BOOL, value_bool);
  1075. EXPECT_EQ(VALUE_BOOL, value_bool);
  1076. data_type = ge::DT_UNDEFINED;
  1077. ge::AttrUtils::GetDataType(op_desc_dest, KEY_TYPE, data_type);
  1078. EXPECT_EQ(ge::DT_FLOAT, data_type);
  1079. }
  1080. TEST_F(STestTensorflowParser, parse_ParseNodeDef)
  1081. {
  1082. NodeDef * node_def = new NodeDef();
  1083. node_def->set_name("test_name");
  1084. node_def->set_op("PlaceholderWithDefault");
  1085. bool isDatasetInit = true;
  1086. TensorFlowModelParser model_parser;
  1087. Status ret = model_parser.AdaptOpType(node_def, isDatasetInit);
  1088. EXPECT_EQ(domi::SUCCESS, ret);
  1089. node_def->set_op("Add");
  1090. ret = model_parser.AdaptOpType(node_def, isDatasetInit);
  1091. EXPECT_EQ(domi::SUCCESS, ret);
  1092. delete node_def;
  1093. }
  1094. TEST_F(STestTensorflowParser, parse_AddFmkNode)
  1095. {
  1096. TensorFlowModelParser modelParser;
  1097. std::string caseDir = __FILE__;
  1098. std::size_t idx = caseDir.find_last_of("/");
  1099. caseDir = caseDir.substr(0, idx);
  1100. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  1101. ge::Graph graph;
  1102. string graph_name;
  1103. AclGrphParseUtil acl_graph_parse_util;
  1104. std::map<ge::AscendString, ge::AscendString> parser_options = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
  1105. ParerSTestsUtils::ClearParserInnerCtx();
  1106. Status ret = acl_graph_parse_util.ParseParamsBeforeGraph(parser_options, graph_name);
  1107. ret = aclgrphParseTensorFlow(modelFile.c_str(), parser_options, graph);
  1108. ASSERT_EQ(ret, SUCCESS);
  1109. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1110. tensorflow::GraphDef *graphDef = new (std::nothrow) tensorflow::GraphDef();
  1111. ScopePassManager pass_manager;
  1112. std::shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graphDef);
  1113. std::string fusion_op_name = "fusion_op_name";
  1114. FusionScopesResult *fusion_rlt = new (std::nothrow) FusionScopesResult();
  1115. EXPECT_NE(fusion_rlt, nullptr);
  1116. fusion_rlt->Init();
  1117. GenFusionScopesResult(scope_graph, fusion_rlt, fusion_op_name);
  1118. GenOriginContext(&modelParser, fusion_op_name);
  1119. // origin inner node def
  1120. NodeDef* node_def = MallocNodeDef("scope_node_1", "Add");
  1121. EXPECT_NE(node_def, nullptr);
  1122. modelParser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def);
  1123. bool train_flag_backup = ge::GetParserContext().train_flag;
  1124. ge::GetParserContext().train_flag = true;
  1125. REGISTER_CUSTOM_OP("Identity")
  1126. .FrameworkType(domi::TENSORFLOW)
  1127. .OriginOpType("Identity")
  1128. .ParseParamsFn(ParseParams)
  1129. .ImplyType(ImplyType::TVM);
  1130. REGISTER_CUSTOM_OP("Constant")
  1131. .FrameworkType(domi::TENSORFLOW)
  1132. .OriginOpType("Const")
  1133. .ParseParamsFn(ParseParams)
  1134. .ImplyType(ImplyType::TVM);
  1135. register_tbe_op();
  1136. std::vector<std::string> node_name_list;
  1137. GenOriginNodeDef(&modelParser, node_name_list);
  1138. std::set<std::string> malloc_node_name_list(node_name_list.begin(), node_name_list.end());
  1139. node_name_list.push_back(fusion_op_name);
  1140. ret = modelParser.AddFmkNode(compute_graph, scope_graph, node_name_list, false);
  1141. EXPECT_EQ(ret, PARAM_INVALID);
  1142. EXPECT_EQ(modelParser.scope_inner_node_map_.size(), 0);
  1143. EXPECT_EQ(modelParser.nodedef_map_.size(), 5);
  1144. ret = modelParser.AddEdges(compute_graph);
  1145. EXPECT_EQ(ret, SUCCESS);
  1146. // release resource
  1147. delete graphDef;
  1148. delete node_def;
  1149. modelParser.DeleteFuisonNodeDef();
  1150. FreeNodeDefMap(&modelParser, malloc_node_name_list);
  1151. ge::GetParserContext().train_flag = train_flag_backup;
  1152. }
  1153. TEST_F(STestTensorflowParser, parse_AddScopeInnerNode)
  1154. {
  1155. TensorFlowModelParser modelParser;
  1156. std::string caseDir = __FILE__;
  1157. std::size_t idx = caseDir.find_last_of("/");
  1158. caseDir = caseDir.substr(0, idx);
  1159. std::string modelFile = caseDir + "/origin_models/tf_add.pb";
  1160. std::string op_name = "ge_ascend_irgraph";
  1161. ge::Graph graph(op_name);
  1162. ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
  1163. std::map<ge::AscendString, ge::AscendString> parser_params = {
  1164. {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
  1165. Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
  1166. EXPECT_EQ(ret, SUCCESS);
  1167. std::mutex graph_mutex;
  1168. tensorflow::NodeDef *node_def = new NodeDef();
  1169. node_def->set_name("FastrcnnPredictions");
  1170. node_def->set_op("FastrcnnPredictions");
  1171. // can't find in scope_inner_node_map
  1172. ret = modelParser.AddScopeInnerNode(&modelParser, compute_graph, &graph_mutex, node_def);
  1173. EXPECT_EQ(ret, PARAM_INVALID);
  1174. delete node_def;
  1175. }
  1176. TEST_F(STestTensorflowParser, dyncmic_rnn_scope_pass_plugin_test) {
  1177. ge::Graph graph;
  1178. std::cout << __FILE__ << std::endl;
  1179. std::string caseDir = __FILE__;
  1180. std::size_t idx = caseDir.find_last_of("/");
  1181. caseDir = caseDir.substr(0, idx);
  1182. std::string modelFile = caseDir + "/origin_models/tensor_array.pb";
  1183. std::map<ge::AscendString, ge::AscendString> params;
  1184. string key ="enable_scope_fusion_passes";
  1185. string value ="ScopeDynamicRNNPass";
  1186. params.insert(std::make_pair(ge::AscendString(key.c_str()), ge::AscendString(value.c_str())));
  1187. auto status = aclgrphParseTensorFlow(modelFile.c_str(), params, graph);
  1188. EXPECT_EQ(status, SUCCESS);
  1189. }
  1190. TEST_F(STestTensorflowParser, avgpool3dgrad_plugin_test_format_NDHWC) {
  1191. ge::Graph graph;
  1192. std::cout << __FILE__ << std::endl;
  1193. std::string caseDir = __FILE__;
  1194. std::size_t idx = caseDir.find_last_of("/");
  1195. caseDir = caseDir.substr(0, idx);
  1196. std::string modelFile = caseDir + "/origin_models/avgpool3dgrad_case_1.pb";
  1197. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1198. EXPECT_EQ(status, SUCCESS);
  1199. }
  1200. TEST_F(STestTensorflowParser, tensorflow_merge_test) {
  1201. ge::Graph graph;
  1202. std::cout << __FILE__ << std::endl;
  1203. std::string caseDir = __FILE__;
  1204. std::size_t idx = caseDir.find_last_of("/");
  1205. caseDir = caseDir.substr(0, idx);
  1206. std::string modelFile = caseDir + "/origin_models/merge.pb";
  1207. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1208. EXPECT_EQ(status, FAILED);
  1209. }
  1210. TEST_F(STestTensorflowParser, tensorflow_no_op_test) {
  1211. ge::Graph graph;
  1212. std::cout << __FILE__ << std::endl;
  1213. std::string caseDir = __FILE__;
  1214. std::size_t idx = caseDir.find_last_of("/");
  1215. caseDir = caseDir.substr(0, idx);
  1216. std::string modelFile = caseDir + "/origin_models/test_no_op.pb";
  1217. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1218. EXPECT_EQ(status, SUCCESS);
  1219. }
  1220. TEST_F(STestTensorflowParser, tensorflow_identity_test) {
  1221. ge::Graph graph;
  1222. std::cout << __FILE__ << std::endl;
  1223. std::string caseDir = __FILE__;
  1224. std::size_t idx = caseDir.find_last_of("/");
  1225. caseDir = caseDir.substr(0, idx);
  1226. std::string modelFile = caseDir + "/origin_models/test_identity.pb";
  1227. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1228. EXPECT_EQ(status, SUCCESS);
  1229. }
  1230. TEST_F(STestTensorflowParser, tensorflow_constant_test) {
  1231. ge::Graph graph;
  1232. std::cout << __FILE__ << std::endl;
  1233. std::string caseDir = __FILE__;
  1234. std::size_t idx = caseDir.find_last_of("/");
  1235. caseDir = caseDir.substr(0, idx);
  1236. std::string modelFile = caseDir + "/origin_models/test_constant.pb";
  1237. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1238. EXPECT_EQ(status, SUCCESS);
  1239. TensorFlowConstantParser constantParser;
  1240. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1241. NodeDef* node_def = initNodeDef();
  1242. node_def->set_name("Constant");
  1243. auto params = constantParser.ParseParams(node_def, op_dest);
  1244. EXPECT_EQ(params, SUCCESS);
  1245. auto value = constantParser.ParseValue(node_def, op_dest);
  1246. EXPECT_EQ(value, SUCCESS);
  1247. ConstantOperator op;
  1248. auto type = constantParser.ParseDType(node_def, &op);
  1249. EXPECT_EQ(type, SUCCESS);
  1250. }
  1251. TEST_F(STestTensorflowParser, tensorflow_reshpae_test) {
  1252. ge::Graph graph;
  1253. std::cout << __FILE__ << std::endl;
  1254. std::string caseDir = __FILE__;
  1255. std::size_t idx = caseDir.find_last_of("/");
  1256. caseDir = caseDir.substr(0, idx);
  1257. std::string modelFile = caseDir + "/origin_models/test_reshape.pb";
  1258. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1259. EXPECT_EQ(status, SUCCESS);
  1260. TensorFlowReshapeParser parser;
  1261. NodeDef * nodeDef = new NodeDef();
  1262. ge::OpDescPtr opdef_ = make_shared<::ge::OpDesc>("","");
  1263. google::protobuf::Map<std::string, tensorflow::AttrValue >* attr_map = nodeDef->mutable_attr();
  1264. domi::tensorflow::AttrValue tshape_attr_value;
  1265. tshape_attr_value.set_type(domi::tensorflow::DT_INT32);
  1266. (*attr_map)[TENSORFLOW_ATTR_TSHAPE] = tshape_attr_value;
  1267. domi::tensorflow::AttrValue t_attr_value;
  1268. t_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1269. (*attr_map)[TENSORFLOW_ATTR_T] = t_attr_value;
  1270. Status ret = parser.ParseParams(nodeDef, opdef_);
  1271. EXPECT_EQ(domi::SUCCESS, ret);
  1272. delete nodeDef;
  1273. }
  1274. TEST_F(STestTensorflowParser, tensorflow_squeeze_test) {
  1275. ge::Graph graph;
  1276. std::cout << __FILE__ << std::endl;
  1277. std::string caseDir = __FILE__;
  1278. std::size_t idx = caseDir.find_last_of("/");
  1279. caseDir = caseDir.substr(0, idx);
  1280. std::string modelFile = caseDir + "/origin_models/test_sequeeze.pb";
  1281. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1282. EXPECT_EQ(status, SUCCESS);
  1283. TensorFlowSqueezeParser parser;
  1284. NodeDef *nodeDef = initNodeDef();
  1285. ge::OpDescPtr opDef = make_shared<::ge::OpDesc>("Squeeze","Squeeze");
  1286. Status ret = parser.ParseParams(nodeDef, opDef);
  1287. EXPECT_EQ(ret, SUCCESS);
  1288. NodeDef *nodeDef_dim = initNodeDef_dims();
  1289. ret = parser.ParseParams(nodeDef_dim, opDef);
  1290. EXPECT_EQ(SUCCESS, ret);
  1291. NodeDef *nodeDef_axis_dims = initNodeDef_axis_dims();
  1292. ret = parser.ParseParams(nodeDef_axis_dims, opDef);
  1293. EXPECT_EQ(GRAPH_PARAM_INVALID, ret);
  1294. static const string KEY_SHAPE_LIST = "key_shape_list";
  1295. static const string KEY_TENSOR_LIST = "key_tensor_list";
  1296. static const string KEY_DEFAULT = "key_default";
  1297. NodeDef *nodeDef2 = new NodeDef();
  1298. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef2->mutable_attr();
  1299. domi::tensorflow::AttrValue dtype_attr_value ;
  1300. dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
  1301. (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
  1302. //设置strides属性
  1303. tensorflow::AttrValue axis_attr_value;
  1304. tensorflow::AttrValue_ListValue *list = axis_attr_value.mutable_list();
  1305. list->add_i(1);
  1306. list->add_i(2);
  1307. (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
  1308. domi::tensorflow::AttrValue value;
  1309. domi::tensorflow::AttrValue df_attr_value;
  1310. // df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
  1311. domi::tensorflow::AttrValue pad_attr_value;
  1312. pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
  1313. domi::tensorflow::AttrValue shape;
  1314. shape.mutable_list()->add_i((int64)32);
  1315. shape.mutable_list()->add_i((int64)32);
  1316. shape.mutable_list()->add_i((int64)14);
  1317. static const string KEY_TYPE_LIST = "key_type_list";
  1318. const std::string ATTR_NAME_INPUT_TENSOR_DESC = "input_tensor_desc";
  1319. const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
  1320. static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
  1321. value.clear_value();
  1322. value.mutable_list()->add_type(VALUE_TYPE);
  1323. TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, nodeDef2);
  1324. value.clear_value();
  1325. domi::tensorflow::NameAttrList name_attr_list;
  1326. name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
  1327. name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
  1328. name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
  1329. *(value.mutable_list()->add_func()) = name_attr_list;
  1330. nodeDef2->mutable_attr()->insert({ge::ATTR_NAME_INPUT_TENSOR_DESC, value});
  1331. nodeDef2->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
  1332. ret = parser.ParseParams(nodeDef2, opDef);
  1333. EXPECT_EQ(domi::SUCCESS, ret);
  1334. delete nodeDef2;
  1335. delete nodeDef_axis_dims;
  1336. delete nodeDef_dim;
  1337. delete nodeDef;
  1338. }
  1339. TEST_F(STestTensorflowParser, tensorflow_fill_test) {
  1340. ge::Graph graph;
  1341. std::cout << __FILE__ << std::endl;
  1342. std::string caseDir = __FILE__;
  1343. std::size_t idx = caseDir.find_last_of("/");
  1344. caseDir = caseDir.substr(0, idx);
  1345. std::string modelFile = caseDir + "/origin_models/test_fill.pb";
  1346. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1347. EXPECT_EQ(status, SUCCESS);
  1348. }
  1349. TEST_F(STestTensorflowParser, tensorflow_shape_n_test) {
  1350. ge::Graph graph;
  1351. std::cout << __FILE__ << std::endl;
  1352. std::string caseDir = __FILE__;
  1353. std::size_t idx = caseDir.find_last_of("/");
  1354. caseDir = caseDir.substr(0, idx);
  1355. std::string modelFile = caseDir + "/origin_models/test_shape_n.pb";
  1356. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1357. EXPECT_EQ(status, SUCCESS);
  1358. }
  1359. TEST_F(STestTensorflowParser, tensorflow_switch_test) {
  1360. ge::Graph graph;
  1361. std::cout << __FILE__ << std::endl;
  1362. std::string caseDir = __FILE__;
  1363. std::size_t idx = caseDir.find_last_of("/");
  1364. caseDir = caseDir.substr(0, idx);
  1365. std::string modelFile = caseDir + "/origin_models/test_switch.pb";
  1366. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1367. EXPECT_EQ(status, SUCCESS);
  1368. TensorFlowRefSwitchParser refSwitchParser;
  1369. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1370. NodeDef* node_def = initNodeDef();
  1371. node_def->set_name("RefSwitch");
  1372. auto params = refSwitchParser.ParseParams(node_def, op_dest);
  1373. EXPECT_EQ(params, SUCCESS);
  1374. RefSwitchOperator op;
  1375. auto parseRet = refSwitchParser.ParseT(node_def, &op);
  1376. EXPECT_EQ(parseRet, SUCCESS);
  1377. }
  1378. TEST_F(STestTensorflowParser, tensorflow_enter_test) {
  1379. ge::Graph graph;
  1380. std::cout << __FILE__ << std::endl;
  1381. std::string caseDir = __FILE__;
  1382. std::size_t idx = caseDir.find_last_of("/");
  1383. caseDir = caseDir.substr(0, idx);
  1384. std::string modelFile = caseDir + "/origin_models/test_enter.pb";
  1385. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1386. EXPECT_EQ(status, SUCCESS);
  1387. }
  1388. TEST_F(STestTensorflowParser, tensorflow_VariableV2_test) {
  1389. ge::Graph graph;
  1390. std::string caseDir = __FILE__;
  1391. std::size_t idx = caseDir.find_last_of("/");
  1392. caseDir = caseDir.substr(0, idx);
  1393. std::string modelFile = caseDir + "/origin_models/test_VariableV2.pb";
  1394. auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
  1395. EXPECT_EQ(status, SUCCESS);
  1396. }
  1397. TEST_F(STestTensorflowParser, tensorflow_fusion_op_parser_test)
  1398. {
  1399. TensorFlowFusionOpParser fusionOpParser;
  1400. ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("FusionOp", ge::parser::CONSTANT);
  1401. int index = 0;
  1402. NodeDef* node_def = fusioninitNodeDef(index);
  1403. node_def->set_name("FusionOp");
  1404. auto ret = fusionOpParser.ParseParams(node_def, op_dest);
  1405. EXPECT_EQ(ret, SUCCESS);
  1406. int32_t param = 1;
  1407. ret = fusionOpParser.ParseParamFromConst(node_def, param);
  1408. EXPECT_EQ(ret, SUCCESS);
  1409. ret = fusionOpParser.ParseParamFromConst(node_def, param, index);
  1410. EXPECT_EQ(ret, SUCCESS);
  1411. float params = 0.0;
  1412. ret = fusionOpParser.ParseParamFromConst(node_def, params);
  1413. EXPECT_EQ(ret, SUCCESS);
  1414. index = 2;
  1415. node_def = fusioninitNodeDef(index);
  1416. ret = fusionOpParser.ParseParamFromConst(node_def, params, index);
  1417. EXPECT_EQ(ret, domi::PARAM_INVALID);
  1418. ret = fusionOpParser.ParseHalfFromConst(node_def, params, 0);
  1419. EXPECT_EQ(ret, SUCCESS);
  1420. ret = fusionOpParser.ParseHalfFromConst(node_def, params, 3);
  1421. EXPECT_EQ(ret, domi::PARAM_INVALID);
  1422. node_def = fusioninitNodeDef(0);
  1423. ret = fusionOpParser.ParseHalfFromConst(node_def, params, 3);
  1424. EXPECT_EQ(ret, domi::PARAM_INVALID);
  1425. static const float VALUE_FLOAT = 1.0;
  1426. ge::GeTensorPtr weight = nullptr;
  1427. ret = fusionOpParser.ParseWeightFromConst(node_def, weight);
  1428. EXPECT_EQ(ret, domi::SUCCESS);
  1429. EXPECT_NE(weight, nullptr);
  1430. ge::DataType ge_data_type = weight->GetTensorDesc().GetDataType();
  1431. EXPECT_EQ(ge_data_type, ge::DataType::DT_FLOAT);
  1432. const uint8_t* data_buff = weight->GetData().GetData();
  1433. size_t data_size = weight->GetData().size();
  1434. EXPECT_NE(data_buff, nullptr);
  1435. EXPECT_EQ(data_size, sizeof(float));
  1436. float value_float = *((float*)data_buff);
  1437. EXPECT_EQ(value_float, VALUE_FLOAT);
  1438. delete node_def;
  1439. }
  1440. TEST_F(STestTensorflowParser, tensorflow_auto_mapping_parser_adapter_test)
  1441. {
  1442. ge::OpDescPtr op_dest = nullptr;
  1443. Message *op_src = nullptr;
  1444. TensorFlowAutoMappingParserAdapter autoMappingParser;
  1445. NodeDef* node_def = initNodeDef();
  1446. Status ret = autoMappingParser.ParseParams(op_src, op_dest);
  1447. EXPECT_EQ(ret, PARAM_INVALID);
  1448. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1449. EXPECT_EQ(ret, PARAM_INVALID);
  1450. op_dest = make_shared<ge::OpDesc>("AutoMapping", ge::parser::CONSTANT);
  1451. op_dest->SetType(ge::parser::EMPTY);
  1452. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1453. EXPECT_EQ(ret, SUCCESS);
  1454. op_dest->SetType(ge::parser::IDENTITYN);
  1455. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1456. EXPECT_EQ(ret, SUCCESS);
  1457. op_dest->SetType(ge::parser::SIZE);
  1458. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1459. EXPECT_EQ(ret, SUCCESS);
  1460. op_dest->SetType(ge::parser::SHAPE);
  1461. ret = autoMappingParser.ParseParams(node_def, op_dest);
  1462. EXPECT_EQ(ret, SUCCESS);
  1463. }
  1464. TEST_F(STestTensorflowParser, tensorflow_fusion_custom_parser_adapter_test)
  1465. {
  1466. REGISTER_CUSTOM_OP("FusionCustom")
  1467. .FrameworkType(domi::TENSORFLOW)
  1468. .OriginOpType("FusionCustom")
  1469. .FusionParseParamsFn(FusionParserParams)
  1470. .ImplyType(ImplyType::TVM);
  1471. register_tbe_op();
  1472. auto graph = std::make_shared<ge::ComputeGraph>("FusionCustom");
  1473. auto op_desc = std::make_shared<ge::OpDesc>("FusionCustom", "FusionCustom");
  1474. auto node = graph->AddNode(op_desc);
  1475. NodeDef *node_def = new NodeDef();
  1476. std::vector<const NodeDef *> v_input_const1;
  1477. v_input_const1.push_back(node_def);
  1478. TensorFlowFusionCustomParserAdapter parser;
  1479. domi::Status status = parser.ParseParams(v_input_const1, node);
  1480. EXPECT_EQ(SUCCESS, status);
  1481. ge::Operator op_src("pool", "pooling");
  1482. std::vector<ge::Operator> v_input_const2;
  1483. v_input_const2.push_back(op_src);
  1484. Status ret = parser.ParseParams(v_input_const2, node);
  1485. EXPECT_EQ(FAILED, ret);
  1486. delete node_def;
  1487. }
  1488. TEST_F(STestTensorflowParser, tensorflow_custom_parser_adapter_test)
  1489. {
  1490. ge::Operator op_src("pool", "pooling");
  1491. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1492. TensorFlowCustomParserAdapter parser;
  1493. Status ret = parser.ParseParams(op_src, op_dest);
  1494. EXPECT_EQ(ret, FAILED);
  1495. REGISTER_CUSTOM_OP("Variable")
  1496. .FrameworkType(domi::TENSORFLOW)
  1497. .OriginOpType("VariableV2")
  1498. .ParseParamsFn(ParseParams)
  1499. .ParseParamsByOperatorFn(ParseParamByOpFunc)
  1500. .ImplyType(ImplyType::CUSTOM);
  1501. register_tbe_op();
  1502. Operator opSrc(ge::parser::VARIABLE, "VariableV2");
  1503. ret = parser.ParseParams(opSrc, op_dest);
  1504. EXPECT_EQ(ret, SUCCESS);
  1505. }
  1506. TEST_F(STestTensorflowParser, tensorflow_graph_functiondef_FindAttrValue_test)
  1507. {
  1508. GraphToFunctionDef functionDef;
  1509. NodeDef *node_def = nullptr;
  1510. std::string attr_name = "Const";
  1511. tensorflow::AttrValue attr_value;
  1512. bool ret = functionDef.FindAttrValue(node_def, attr_name, attr_value);
  1513. EXPECT_EQ(ret, false);
  1514. node_def = initNodeDef();
  1515. attr_name = ge::ATTR_NAME_INPUT_TENSOR_DESC;
  1516. node_def->set_name("Const");
  1517. ret = functionDef.FindAttrValue(node_def, attr_name, attr_value);
  1518. EXPECT_EQ(ret, false);
  1519. }
  1520. TEST_F(STestTensorflowParser, tensorflow_graph_functiondef_BuildFunctionDef_test)
  1521. {
  1522. ge::ComputeGraphPtr subGraph = std::make_shared<ge::ComputeGraph>("default");
  1523. string inputNodeType = "DATA";
  1524. MakeDagGraph(subGraph, inputNodeType);
  1525. FunctionDefLibrary library;
  1526. tensorflow::NodeDef call_node_def;
  1527. call_node_def.set_op("fusionop");
  1528. call_node_def.set_name("fusionop");
  1529. vector<ge::InDataAnchorPtr> in_anchor;
  1530. vector<ge::OutDataAnchorPtr> out_anchor;
  1531. for (ge::NodePtr node : subGraph->GetAllNodes()) {
  1532. for (auto in : node->GetAllInDataAnchors()) {
  1533. if (in->GetPeerOutAnchor() != nullptr && in->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc()->GetType() == parser::DATA) {
  1534. in_anchor.push_back(in);
  1535. }
  1536. }
  1537. for (auto out : node->GetAllOutDataAnchors()) {
  1538. for (auto i : out->GetPeerInDataAnchors()) {
  1539. if (i->GetOwnerNode()->GetOpDesc()->GetType() == parser::NETOUTPUT) {
  1540. out_anchor.push_back(out);
  1541. }
  1542. }
  1543. }
  1544. }
  1545. Status ret = GraphToFunctionDef::BuildFunctionDef(subGraph,
  1546. "fusionop",
  1547. &library,
  1548. &call_node_def,
  1549. in_anchor,
  1550. out_anchor);
  1551. EXPECT_EQ(domi::INTERNAL_ERROR, ret);
  1552. }
  1553. TEST_F(STestTensorflowParser, tensorflow_CheckOpShapeDim_test)
  1554. {
  1555. NodeDef *node_def = initNodeDef();
  1556. std::set<int> dims;
  1557. dims.insert(1);
  1558. dims.insert(2);
  1559. bool valid = true;
  1560. TensorFlowModelParser parser;
  1561. Status ret = parser.CheckOpShapeDim(node_def, dims, valid);
  1562. EXPECT_EQ(ret, SUCCESS);
  1563. }
  1564. TEST_F(STestTensorflowParser, tensorflow_Scope_pass_test)
  1565. {
  1566. ScopePassManager passmanager;
  1567. auto scope_graph = ge::parser::MakeShared<ge::ScopeGraph>();
  1568. if (scope_graph == nullptr) {
  1569. GELOGE(FAILED, "Scope graph make shared failed.");
  1570. return;
  1571. }
  1572. if (scope_graph->Init() != SUCCESS) {
  1573. GELOGE(FAILED, "Scope graph init failed.");
  1574. return;
  1575. }
  1576. ge::TensorFlowModelParser tf_model_parser;
  1577. std::vector<string> scope_passes_list = {"pass_1", "pass_2"};
  1578. tf_model_parser.RunScopeFusionPass(scope_passes_list, passmanager, scope_graph);
  1579. Status ret = tf_model_parser.RunScopeFusionPass(scope_passes_list, passmanager, scope_graph);
  1580. EXPECT_NE(ge::SUCCESS, ret);
  1581. }
  1582. TEST_F(STestTensorflowParser, tensorflow_variable_v2_parser_test)
  1583. {
  1584. TensorFlowCustomParserAdapter parser;
  1585. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1586. NodeDef *node_def = initNodeDef();
  1587. TensorFlowModelParser modelParser;
  1588. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1589. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Variable");
  1590. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1591. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1592. EXPECT_EQ(ret, PARAM_INVALID);
  1593. node_def->set_name("TemporaryVariable");
  1594. node_def->set_op("TemporaryVariable");
  1595. op_parser = factory->CreateOpParser("TemporaryVariable");
  1596. tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1597. ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1598. EXPECT_EQ(ret, PARAM_INVALID);
  1599. NodeDef *nodeDef_temporaryVariable = initOpNodeDef_TemporaryVariable();
  1600. op_parser = factory->CreateOpParser("TemporaryVariable");
  1601. tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1602. ret = tensorflow_op_parser->ParseParams(nodeDef_temporaryVariable, op_dest);
  1603. EXPECT_EQ(ret, SUCCESS);
  1604. NodeDef *nodeDef_VariableV2 = initOpNodeDef_VariableV2();
  1605. op_parser = factory->CreateOpParser("Variable");
  1606. tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1607. ret = tensorflow_op_parser->ParseParams(nodeDef_VariableV2, op_dest);
  1608. EXPECT_EQ(ret, SUCCESS);
  1609. }
  1610. TEST_F(STestTensorflowParser, tensorflow_var_is_initialized_op_test)
  1611. {
  1612. TensorFlowCustomParserAdapter parser;
  1613. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1614. NodeDef *node_def = initNodeDef();
  1615. TensorFlowModelParser modelParser;
  1616. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1617. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("VarIsInitializedOp");
  1618. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1619. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1620. EXPECT_EQ(ret, SUCCESS);
  1621. }
  1622. TEST_F(STestTensorflowParser, tensorflow_arg_parser_test)
  1623. {
  1624. TensorFlowCustomParserAdapter parser;
  1625. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1626. NodeDef *node_def = initNodeDef();
  1627. TensorFlowModelParser modelParser;
  1628. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1629. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("_Arg");
  1630. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1631. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1632. EXPECT_EQ(ret, SUCCESS);
  1633. }
  1634. TEST_F(STestTensorflowParser, tensorflow_frameworkop_parser_test)
  1635. {
  1636. TensorFlowCustomParserAdapter parser;
  1637. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1638. NodeDef *node_def = initNodeDef();
  1639. TensorFlowModelParser modelParser;
  1640. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1641. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("FrameworkOp");
  1642. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1643. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1644. EXPECT_EQ(ret, PARAM_INVALID);
  1645. ChangeDataType(node_def, tensorflow::DT_UINT16);
  1646. ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1647. EXPECT_EQ(ret, PARAM_INVALID);
  1648. }
  1649. TEST_F(STestTensorflowParser, tensorflow_reshape_parser_test)
  1650. {
  1651. TensorFlowCustomParserAdapter parser;
  1652. ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
  1653. NodeDef *node_def = initNodeDef();
  1654. TensorFlowModelParser modelParser;
  1655. std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
  1656. std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Reshape");
  1657. shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
  1658. Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
  1659. EXPECT_EQ(ret, SUCCESS);
  1660. }
  1661. TEST_F(STestTensorflowParser, tensorflow_DefunToPartitionedCall_parser_test)
  1662. {
  1663. TensorFlowModelParser parser;
  1664. NodeDef *node_def = initNodeDef();
  1665. node_def->set_name("ShapeN");
  1666. ge::OpDescPtr op = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1667. Status ret = parser.DefunToPartitionedCall(node_def, op);
  1668. EXPECT_EQ(ret, FAILED);
  1669. }
  1670. TEST_F(STestTensorflowParser, tensorflow_TransNodeToOpDesc_parser_test)
  1671. {
  1672. TensorFlowModelParser parser;
  1673. NodeDef *node_def = initNodeDef();
  1674. node_def->set_name("ge::parser::DATA");
  1675. std::string op_type = "ge::parser::DATA";
  1676. ge::OpDescPtr op = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
  1677. Status ret = parser.TransNodeToOpDesc(node_def, op, op_type);
  1678. EXPECT_EQ(ret, FAILED);
  1679. }
  1680. domi::Status fusion_parse_param_by_op(const std::vector<ge::Operator> &op_src, ge::Operator &op) {
  1681. return domi::SUCCESS;
  1682. }
  1683. TEST_F(STestTensorflowParser, Fusion_node_parse_params_success) {
  1684. ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1685. ModelParserFactory* factory = ModelParserFactory::Instance();
  1686. shared_ptr<ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  1687. ASSERT_TRUE(NULL != model_parser);
  1688. TensorFlowModelParser tensorflow_parser;
  1689. domi::tensorflow::NodeDef node_def;
  1690. node_def.set_name("data");
  1691. node_def.set_op("FusionCustom");
  1692. FusionParseParamByOpFunc function = fusion_parse_param_by_op;
  1693. shared_ptr<ge::OpParserFactory> op_parser = ge::OpParserFactory::Instance(domi::TENSORFLOW);
  1694. shared_ptr<OpParser> fusion_op_parser = op_parser->CreateFusionOpParser("FusionCustom");
  1695. ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1696. ge::OpDescPtr op = std::make_shared<ge::OpDesc>("data", "FusionCustom");
  1697. ge::NodePtr node = std::make_shared<ge::Node>(op, graph);
  1698. vector<const NodeDef *> node_defs;
  1699. node_defs.push_back(&node_def);
  1700. tensorflow_parser.fusion_op_nodedef_map_["data"] = node_defs;
  1701. Status ret = tensorflow_parser.FusionNodeParseParams(fusion_op_parser, &node_def, node);
  1702. EXPECT_EQ(domi::SUCCESS, ret);
  1703. }
  1704. TEST_F(STestTensorflowParser, Tensorflow_recordFusionResult_parser_test)
  1705. {
  1706. auto scope_graph = ge::parser::MakeShared<ge::ScopeGraph>();
  1707. if (scope_graph == nullptr) {
  1708. GELOGE(FAILED, "Scope graph make shared failed.");
  1709. return;
  1710. }
  1711. if (scope_graph->Init() != SUCCESS) {
  1712. GELOGE(FAILED, "Scope graph init failed.");
  1713. return;
  1714. }
  1715. domi::tensorflow::NodeDef node_def;
  1716. node_def.set_name("OP");
  1717. FusionScopesResult *fusion_scope_rlt = new (std::nothrow) FusionScopesResult();
  1718. if (fusion_scope_rlt == nullptr) {
  1719. GELOGE(FAILED, "FusionScopesResult make shared failed.");
  1720. return;
  1721. }
  1722. fusion_scope_rlt->Init();
  1723. fusion_scope_rlt->SetName("OP");
  1724. auto &impl_scope_graph = scope_graph->impl_;
  1725. std::string scope_name = fusion_scope_rlt->Name();
  1726. impl_scope_graph->fusion_results_.insert(std::make_pair(scope_name, fusion_scope_rlt));
  1727. std::vector<ge::OperatorPtr> nodes;
  1728. ge::OperatorPtr op = ge::parser::MakeShared<ge::Operator>("op_name", "op_type");
  1729. if (op == nullptr) {
  1730. GELOGE(FAILED, "Operator make shared failed.");
  1731. return;
  1732. }
  1733. nodes.push_back(op);
  1734. fusion_scope_rlt->impl_->AddNodes(nodes);
  1735. ge::OpDescPtr opDesc = std::make_shared<ge::OpDesc>();
  1736. ge::TensorFlowModelParser tf_model_parser;
  1737. Status ret = tf_model_parser.RecordFusionResult(scope_graph, &node_def, opDesc);
  1738. EXPECT_EQ(SUCCESS, ret);
  1739. }
  1740. TEST_F(STestTensorflowParser, Tensorflow_UpdateFusionOpContext_test)
  1741. {
  1742. ModelParserFactory* factory = ModelParserFactory::Instance();
  1743. shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
  1744. TensorFlowModelParser tensorflow_parser;
  1745. ScopeFusionOpInfo info;
  1746. ge::OpNodeContext normal_op_node_context;
  1747. ge::OpNodeContext fusion_op_node_context;
  1748. /* 1.预置条件 */
  1749. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  1750. ScopePassManager passmanager;
  1751. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  1752. NodeDef * node1 = graph->add_node();
  1753. node1->set_name("conv_conv5/BatchNorm/batchnorm/add");
  1754. node1->set_op("Add");
  1755. node1->add_input("conv_conv5/BatchNorm/moving_variance");
  1756. node1->add_input("conv_conv5/BatchNorm/batchnorm/add/y");
  1757. NodeDef * node2 = graph->add_node();
  1758. node2->set_name("conv_conv5/BatchNorm/moving_variance");
  1759. node2->set_op("Const");
  1760. NodeDef * node3 = graph->add_node();
  1761. node3->set_name("conv_conv5/BatchNorm/batchnorm/add/y");
  1762. node3->set_op("Const");
  1763. info.fusion_node_name = "conv_conv5/BatchNorm/batchnorm";
  1764. info.fusion_op_type = ge::parser::FUSIONBATCHNORM;
  1765. info.node_name = "conv_conv5/BatchNorm/batchnorm/add";
  1766. info.description = "";
  1767. info.scope_pass = false;
  1768. EXPECT_EQ(scope_graph->impl_->GetFusionScopesResults(nullptr), nullptr);
  1769. EXPECT_EQ(scope_graph->impl_->GetFusionScopesResults(node1), nullptr);
  1770. Status ret = tensorflow_parser.UpdateFusionOpContext(scope_graph, info, fusion_op_node_context, normal_op_node_context);
  1771. EXPECT_EQ(ret, domi::SUCCESS);
  1772. delete graph;
  1773. }
  1774. TEST_F(STestTensorflowParser, Tensorflow_GetInOutPutIndex_scope_pass)
  1775. {
  1776. ModelParserFactory* factory = ModelParserFactory::Instance();
  1777. shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
  1778. TensorFlowModelParser tensorflow_parser;
  1779. tensorflow::GraphDef *graph = new tensorflow::GraphDef();
  1780. ScopePassManager passmanager;
  1781. shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
  1782. FusionScopesResult* fusion_rlt = new FusionScopesResult();
  1783. fusion_rlt->Init();
  1784. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/ToInt32" ,{0}));
  1785. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/ToInt32" ,{0}));
  1786. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/ReverseSequence" ,{0, 1}));
  1787. fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/ReverseSequence" ,{1}));
  1788. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("concat" ,{0}));
  1789. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/while/Exit_3" ,{1}));
  1790. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/while/Exit_4" ,{2}));
  1791. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/while/Exit_3" ,{3}));
  1792. fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/while/Exit_4" ,{4}));
  1793. fusion_rlt->SetType("dynamic_rnn");
  1794. fusion_rlt->SetName("dynamic_rnn_node1");
  1795. scope_graph->impl_->AddFusionScopesResult(fusion_rlt);
  1796. ScopeFusionOpInfo info1;
  1797. info1.node_name = "fw/fw/ToInt32";
  1798. info1.fusion_node_name = "dynamic_rnn_node1";
  1799. info1.fusion_op_type = "dynamic_rnn";
  1800. info1.description = "";
  1801. info1.scope_pass = true;
  1802. bool ignore = false;
  1803. ignore = tensorflow_parser.FusionOpChildIgnore(scope_graph, info1);
  1804. EXPECT_EQ(true, !ignore);
  1805. ScopeFusionOpInfo info2;
  1806. info2.node_name = "fw/fw/others";
  1807. info2.fusion_node_name = "dynamic_rnn_node1";
  1808. info2.fusion_op_type = "dynamic_rnn";
  1809. info2.description = "";
  1810. info2.scope_pass = true;
  1811. ignore = tensorflow_parser.FusionOpChildIgnore(scope_graph, info2);
  1812. EXPECT_EQ(true, ignore);
  1813. ScopeFusionOpInfo input_node_info;
  1814. input_node_info.node_name = "fw/fw/ToInt32";
  1815. input_node_info.fusion_node_name = "dynamic_rnn_node1";
  1816. input_node_info.fusion_op_type = "dynamic_rnn";
  1817. input_node_info.description = "";
  1818. input_node_info.scope_pass = true;
  1819. ScopeFusionOpInfo output_node_info;
  1820. output_node_info.node_name = "fw/fw/while/Exit_3";
  1821. output_node_info.fusion_node_name = "dynamic_rnn_node1";
  1822. output_node_info.fusion_op_type = "dynamic_rnn";
  1823. output_node_info.description = "";
  1824. output_node_info.scope_pass = true;
  1825. int32_t old_index = 0, new_index = -1;
  1826. Status ret = tensorflow_parser.GetInPutIndex(scope_graph, input_node_info, old_index, new_index);
  1827. EXPECT_EQ(domi::SUCCESS, ret);
  1828. EXPECT_EQ(true, (new_index == 0));
  1829. ret = tensorflow_parser.GetOutPutIndex(scope_graph, output_node_info, old_index, new_index);
  1830. EXPECT_EQ(domi::SUCCESS, ret);
  1831. EXPECT_EQ(true, (new_index == 1));
  1832. delete graph;
  1833. }
  1834. TEST_F(STestTensorflowParser, Tensorflow_AddFusionNodeDef_add_fusion_op_succ)
  1835. {
  1836. ModelParserFactory* factory = ModelParserFactory::Instance();
  1837. shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
  1838. TensorFlowModelParser tensorflow_parser;
  1839. string fusion_op_name = "dropout";
  1840. string fusion_op_type = "Dropout";
  1841. string description = "test/dropout";
  1842. tensorflow_parser.fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type);
  1843. tensorflow_parser.fusion_op_type_map_[fusion_op_name].push_back(description);
  1844. // op_node_context for fusion op
  1845. ge::OpNodeContext op_node_context;
  1846. op_node_context.input_map["pre_node_a"].push_back({0, 0});
  1847. op_node_context.input_map["pre_node_b"].push_back({0, 1});
  1848. tensorflow_parser.op_node_context_map_[fusion_op_name] = op_node_context;
  1849. // origin inner node def
  1850. NodeDef* node_def = new (std::nothrow) NodeDef();
  1851. node_def->set_name("scope_node_1");
  1852. node_def->set_op("Add");
  1853. tensorflow_parser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def);
  1854. ScopePassManager pass_manager;
  1855. tensorflow::GraphDef *graph = new (std::nothrow) tensorflow::GraphDef();
  1856. shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graph);
  1857. vector<string> node_name_list = {fusion_op_name};
  1858. Status ret = tensorflow_parser.AddFusionNodeDef(scope_graph, node_name_list);
  1859. EXPECT_EQ(ret, SUCCESS);
  1860. EXPECT_EQ(tensorflow_parser.nodedef_map_.size(), 1);
  1861. auto fusion_node_def = tensorflow_parser.nodedef_map_[fusion_op_name];
  1862. EXPECT_NE(fusion_node_def, nullptr);
  1863. EXPECT_EQ(fusion_node_def->op(), fusion_op_type);
  1864. delete node_def;
  1865. delete graph;
  1866. tensorflow_parser.DeleteFuisonNodeDef();
  1867. }
  1868. TEST_F(STestTensorflowParser, remain_dpop_node)
  1869. {
  1870. ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
  1871. ge::OpDescPtr op = std::make_shared<ge::OpDesc>("dpop_123", "FrameworkOp");
  1872. ge::NodePtr node = std::make_shared<ge::Node>(op, graph);
  1873. graph->AddNode(node);
  1874. ModelParserFactory* factory = ModelParserFactory::Instance();
  1875. shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  1876. ASSERT_TRUE(NULL != model_parser);
  1877. TensorFlowModelParser tensorflow_parser;
  1878. Status ret = tensorflow_parser.RemoveIsolateNode(graph);
  1879. EXPECT_EQ(domi::SUCCESS, ret);
  1880. }
  1881. TEST_F(STestTensorflowParser, tensorflow_UpdateEdgesControlInfo_test)
  1882. {
  1883. TensorFlowModelParser model_parser;
  1884. ge::ScopeFusionOpInfo info;
  1885. info.fusion_node_name = "conv_conv5/BatchNorm/batchnorm";
  1886. info.fusion_op_type = ge::parser::FUSIONBATCHNORM;
  1887. info.node_name = "conv_conv5/BatchNorm/batchnorm/add";
  1888. info.description = "";
  1889. info.scope_pass = false;
  1890. model_parser.UpdateEdgesControlInfo(info);
  1891. }
  1892. TEST_F(STestTensorflowParser, tensorflow_OptimizeIdentityByOutput_test)
  1893. {
  1894. TensorFlowModelParser model_parser;
  1895. NodeDef *node_def = new NodeDef();
  1896. node_def->set_name("Placeholder");
  1897. node_def->set_op("Placeholder_0");
  1898. std::map<string, NodeDef *> nodedef_map;
  1899. nodedef_map.emplace("Placeholder", node_def);
  1900. std::string curr_node_name = "Placeholder";
  1901. bool clear_input_flag = true;
  1902. Status ret = model_parser.OptimizeIdentityByOutput(nodedef_map, curr_node_name, clear_input_flag);
  1903. EXPECT_EQ(ret, INTERNAL_ERROR);
  1904. GraphDef graph;
  1905. curr_node_name = "pre_node_a";
  1906. nodedef_map.emplace("pre_node_a", node_def);
  1907. node_def->set_op("pre_node_a");
  1908. GenOriginContext(&model_parser, curr_node_name);
  1909. ret = model_parser.OptimizeIdentityByOutput(nodedef_map, curr_node_name, clear_input_flag);
  1910. EXPECT_EQ(ret, SUCCESS);
  1911. delete node_def;
  1912. }
  1913. TEST_F(STestTensorflowParser, tensorflow_OptimizeSnapShot_test)
  1914. {
  1915. TensorFlowModelParser model_parser;
  1916. tensorflow::NodeDef *curr_mode_def = initNodeDef();
  1917. std::map<string, NodeDef *> nodedef_map;
  1918. nodedef_map.emplace("pre_node_a", curr_mode_def);
  1919. std::pair<string, int> input_data;
  1920. std::vector<string> control_list;
  1921. std::string curr_node_name = "pre_node_a";
  1922. GenOriginContext(&model_parser, curr_node_name);
  1923. Status ret = model_parser.OptimizeSnapShot(curr_mode_def, nodedef_map, input_data, control_list);
  1924. EXPECT_EQ(ret, INTERNAL_ERROR);
  1925. curr_mode_def->set_name("pre_node_a");
  1926. GenOriginContext(&model_parser, curr_node_name);
  1927. ret = model_parser.OptimizeSnapShot(curr_mode_def, nodedef_map, input_data, control_list);
  1928. EXPECT_EQ(ret, SUCCESS);
  1929. }
  1930. TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeSnapShot_test)
  1931. {
  1932. TensorFlowModelParser model_parser;
  1933. tensorflow::GraphDef graph_def;
  1934. tensorflow::NodeDef *curr_mode_def = initNodeDef();
  1935. std::map<string, NodeDef *> nodedef_map;
  1936. nodedef_map.emplace("pre_node_a", curr_mode_def);
  1937. std::vector<NodeDef *> nodedef_to_optimize;
  1938. nodedef_to_optimize.emplace_back(curr_mode_def);
  1939. Status ret = model_parser.GraphDefOptimizeSnapShot(&graph_def, nodedef_map, nodedef_to_optimize);
  1940. EXPECT_EQ(ret, FAILED);
  1941. }
  1942. TEST_F(STestTensorflowParser, tensorflow_SetDestNodeName_test)
  1943. {
  1944. TensorFlowModelParser model_parser;
  1945. GraphDef graph;
  1946. auto arg0 = AddNode(graph, "_Arg", "arg0");
  1947. auto identity0 = AddNode(graph, "Identity", "identity0");
  1948. auto add0 = AddNode(graph, "Add", "add0");
  1949. int32_t input_idx = 0;
  1950. bool is_control = true;
  1951. bool clear_input_flag = true;
  1952. AddInput(arg0, identity0, 0);
  1953. AddInput(identity0, add0, 0);
  1954. Status ret = model_parser.SetDestNodeName(identity0, add0, input_idx, is_control, clear_input_flag);
  1955. EXPECT_EQ(ret, SUCCESS);
  1956. }
  1957. TEST_F(STestTensorflowParser, tensorflow_OptimizeDestroyTemporaryVariable_test)
  1958. {
  1959. ModelParserFactory* factory = ModelParserFactory::Instance();
  1960. shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  1961. TensorFlowModelParser tensorflow_parser;
  1962. GraphDef graph;
  1963. auto const0 = AddNode(graph, "Const", "Const0");
  1964. auto tmpVar0 = AddNode(graph, "TemporaryVariable", "TemporaryVariable0");
  1965. auto assign0 = AddNode(graph, "Assign", "Assign0");
  1966. auto destroy0 = AddNode(graph, "DestroyTemporaryVariable", "DestroyTemporaryVariable0");
  1967. auto add0 = AddNode(graph, "Add", "Add0");
  1968. google::protobuf::Map< std::string, tensorflow::AttrValue> *node_attr_map = tmpVar0->mutable_attr();
  1969. tensorflow::AttrValue var_name_attr_value;
  1970. var_name_attr_value.set_s("temporary_variable_name");
  1971. (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
  1972. google::protobuf::Map<std::string, tensorflow::AttrValue>* node_attr_map_destroy = destroy0->mutable_attr();
  1973. tensorflow::AttrValue var_name_attr_value_destroy;
  1974. var_name_attr_value_destroy.set_s("destroy_temporary_variable_name");
  1975. (*node_attr_map_destroy)[ge::VAR_ATTR_NAME] = var_name_attr_value_destroy;
  1976. AddInput(tmpVar0, assign0, 0);
  1977. AddInput(assign0, destroy0, 0);
  1978. AddInput(const0, add0, 0);
  1979. AddInput(destroy0, add0, 1);
  1980. GraphDef* graphDef = &graph;
  1981. int32_t no_input_node_size_original = 0;
  1982. for (int w = 0; w < graphDef->node_size(); w++) {
  1983. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  1984. if (nodeTmp->input_size() == 0) {
  1985. no_input_node_size_original++;
  1986. }
  1987. }
  1988. Status ret = tensorflow_parser.GraphDefOptimize(graphDef);
  1989. int32_t no_input_node_size_result = 0;
  1990. for (int w = 0; w < graphDef->node_size(); w++) {
  1991. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  1992. if (nodeTmp->input_size() == 0) {
  1993. no_input_node_size_result ++;
  1994. }
  1995. }
  1996. ASSERT_EQ(ret, domi::FAILED);
  1997. ASSERT_EQ(no_input_node_size_original, no_input_node_size_result);
  1998. }
  1999. TEST_F(STestTensorflowParser, tensorflow_OptimizeDestroyTemporaryVariable_test2)
  2000. {
  2001. ModelParserFactory* factory = ModelParserFactory::Instance();
  2002. shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
  2003. TensorFlowModelParser tensorflow_parser;
  2004. GraphDef graph;
  2005. auto const0 = AddNode(graph, "Const", "Const0");
  2006. auto tmpVar0 = AddNode(graph, "TemporaryVariable", "TemporaryVariable0");
  2007. auto assign0 = AddNode(graph, "Assign", "Assign0");
  2008. auto destroy0 = AddNode(graph, "DestroyTemporaryVariable", "DestroyTemporaryVariable0");
  2009. auto add0 = AddNode(graph, "Add", "Add0");
  2010. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = tmpVar0->mutable_attr();
  2011. tensorflow::AttrValue var_name_attr_value;
  2012. var_name_attr_value.set_s("temporary_variable_name");
  2013. (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
  2014. google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map_destroy = destroy0->mutable_attr();
  2015. tensorflow::AttrValue var_name_attr_value_destroy;
  2016. var_name_attr_value_destroy.set_s("temporary_variable_name");
  2017. (*node_attr_map_destroy)[ge::VAR_ATTR_NAME] = var_name_attr_value_destroy;
  2018. AddInput(tmpVar0, assign0, 0);
  2019. AddInput(assign0, destroy0, 0);
  2020. AddInput(const0, add0, 0);
  2021. AddInput(destroy0, add0, 1);
  2022. GraphDef* graphDef = &graph;
  2023. int32_t no_input_node_size_original = 0;
  2024. for (int w = 0; w < graphDef->node_size(); w++) {
  2025. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  2026. if (nodeTmp->input_size() == 0) {
  2027. no_input_node_size_original ++;
  2028. }
  2029. }
  2030. Status ret = tensorflow_parser.GraphDefOptimize(graphDef);
  2031. int32_t no_input_node_size_result = 0;
  2032. for (int w = 0; w < graphDef->node_size(); w++) {
  2033. tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
  2034. if (nodeTmp->input_size() == 0) {
  2035. no_input_node_size_result ++;
  2036. }
  2037. }
  2038. ASSERT_EQ(ret, domi::SUCCESS);
  2039. ASSERT_EQ(no_input_node_size_original, (no_input_node_size_result - 1));
  2040. }
  2041. TEST_F(STestTensorflowParser, tensorflow_AddControlEdgeAfterRemoveInputs_test)
  2042. {
  2043. tensorflow::GraphDef graph_def;
  2044. TensorFlowModelParser tensorflow_parser;
  2045. tensorflow::NodeDef *node_def = initNodeDef();
  2046. node_def->set_name("Add0");
  2047. node_def->set_op("add");
  2048. std::map<std::string, NodeDef *> all_node_map;
  2049. all_node_map.emplace("Add0", node_def);
  2050. std::vector<std::string> removed_inputs_vec;
  2051. removed_inputs_vec.emplace_back("Add0");
  2052. Status ret = tensorflow_parser.AddControlEdgeAfterRemoveInputs(&graph_def, node_def, all_node_map, removed_inputs_vec);
  2053. EXPECT_EQ(ret, SUCCESS);
  2054. }
  2055. TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeIdentity_test)
  2056. {
  2057. tensorflow::GraphDef graph_def;
  2058. TensorFlowModelParser tensorflow_parser;
  2059. tensorflow::NodeDef *node_def = initNodeDef();
  2060. node_def->set_name("post_node_d");
  2061. std::map<string, NodeDef *> nodedef_map;
  2062. nodedef_map.emplace("post_node_d", node_def);
  2063. nodedef_map.emplace("post_node_a", node_def);
  2064. nodedef_map.emplace("post_node_b", node_def);
  2065. std::vector<NodeDef *> nodedef_to_optimize;
  2066. nodedef_to_optimize.emplace_back(node_def);
  2067. std::string curr_node_name = "post_node_b";
  2068. GenOriginContext(&tensorflow_parser, curr_node_name);
  2069. Status ret = tensorflow_parser.GraphDefOptimizeIdentity(&graph_def, nodedef_map, nodedef_to_optimize);
  2070. EXPECT_EQ(ret, ge::PARAM_INVALID);
  2071. }
  2072. } // namespace ge