Browse Source

opensource clean

pull/444/head
isaacxr 3 years ago
parent
commit
c03f2a9e7e
9 changed files with 33 additions and 46 deletions
  1. +1
    -1
      parser/caffe/caffe_custom_parser_adapter.cc
  2. +11
    -12
      parser/caffe/caffe_parser.cc
  3. +2
    -4
      parser/common/parser_fp16_t.cc
  4. +1
    -2
      parser/common/parser_utils.cc
  5. +2
    -2
      parser/onnx/onnx_parser.cc
  6. +11
    -18
      parser/tensorflow/tensorflow_parser.cc
  7. +2
    -3
      parser/tensorflow/tensorflow_reshape_parser.cc
  8. +2
    -3
      parser/tensorflow/tensorflow_squeeze_parser.cc
  9. +1
    -1
      parser/tensorflow/tensorflow_util.cc

+ 1
- 1
parser/caffe/caffe_custom_parser_adapter.cc View File

@@ -85,7 +85,7 @@ Status CaffeCustomParserAdapter::ParseWeights(const Message *op_src, ge::NodePtr
GE_CHECK_NOTNULL(op); GE_CHECK_NOTNULL(op);
const LayerParameter *layer = reinterpret_cast<const LayerParameter *>(op_src); const LayerParameter *layer = reinterpret_cast<const LayerParameter *>(op_src);


GE_CHK_BOOL_RET_STATUS(nullptr != layer, FAILED, "[Convert][Type]Dynamic cast op_src to LayerParameter failed");
GE_CHK_BOOL_RET_STATUS(layer != nullptr, FAILED, "[Convert][Type]Dynamic cast op_src to LayerParameter failed");
GELOGI("layer: %s blobs_size: %d bottom_size: %d", layer->name().c_str(), layer->blobs_size(), layer->bottom_size()); GELOGI("layer: %s blobs_size: %d bottom_size: %d", layer->name().c_str(), layer->blobs_size(), layer->bottom_size());
if (layer->blobs_size() == 0) { if (layer->blobs_size() == 0) {
return SUCCESS; return SUCCESS;


+ 11
- 12
parser/caffe/caffe_parser.cc View File

@@ -874,8 +874,7 @@ Status CaffeModelParser::AddNode(const domi::caffe::LayerParameter &layer, ge::C
// AddConstInput is a function defined in caffe_op_parser, override in caffe_reshape_parser. // AddConstInput is a function defined in caffe_op_parser, override in caffe_reshape_parser.
std::shared_ptr<CaffeOpParser> caffe_op_parser = std::static_pointer_cast<CaffeOpParser>(op_parser); std::shared_ptr<CaffeOpParser> caffe_op_parser = std::static_pointer_cast<CaffeOpParser>(op_parser);
GE_CHECK_NOTNULL(caffe_op_parser); GE_CHECK_NOTNULL(caffe_op_parser);
Status status;
status = caffe_op_parser->AddConstInput(node);
Status status = caffe_op_parser->AddConstInput(node);
if (status != SUCCESS) { if (status != SUCCESS) {
REPORT_CALL_ERROR("E19999", "AddConstInput failed for node:%s", node->GetOpDesc()->GetName().c_str()); REPORT_CALL_ERROR("E19999", "AddConstInput failed for node:%s", node->GetOpDesc()->GetName().c_str());
GELOGE(FAILED, "[Add][ConstInput] to node %s fail.", node->GetOpDesc()->GetName().c_str()); GELOGE(FAILED, "[Add][ConstInput] to node %s fail.", node->GetOpDesc()->GetName().c_str());
@@ -2112,17 +2111,17 @@ Status CaffeWeightsParser::ConvertLayerParameter(const google::protobuf::Message
ge::ComputeGraphPtr &graph) { ge::ComputeGraphPtr &graph) {
vector<string> need_share_layers; vector<string> need_share_layers;
const domi::caffe::LayerParameter *layer = reinterpret_cast<const domi::caffe::LayerParameter *>(layer_message); const domi::caffe::LayerParameter *layer = reinterpret_cast<const domi::caffe::LayerParameter *>(layer_message);
const string &layer_name = layer->name();
const string &shared_layer_name = layer->name();
const string &layer_type = layer->type(); const string &layer_type = layer->type();
for (auto p_iter = params_share_map.begin(); p_iter != params_share_map.end(); ++p_iter) { for (auto p_iter = params_share_map.begin(); p_iter != params_share_map.end(); ++p_iter) {
if (find(p_iter->second.begin(), p_iter->second.end(), layer_name) != p_iter->second.end()) {
GELOGI("layer:%s need share weights !", layer_name.c_str());
if (find(p_iter->second.begin(), p_iter->second.end(), shared_layer_name) != p_iter->second.end()) {
GELOGI("layer:%s need share weights !", shared_layer_name.c_str());
need_share_layers = p_iter->second; need_share_layers = p_iter->second;
} }
} }


if (need_share_layers.size() == 0) { if (need_share_layers.size() == 0) {
need_share_layers.push_back(layer_name);
need_share_layers.push_back(shared_layer_name);
} }


for (auto share_iter = need_share_layers.begin(); share_iter != need_share_layers.end(); ++share_iter) { for (auto share_iter = need_share_layers.begin(); share_iter != need_share_layers.end(); ++share_iter) {
@@ -2229,27 +2228,27 @@ Status CaffeWeightsParser::ConvertNetParameter(const NetParameter &param, ge::Co


for (int i = 0; i < num_layer; ++i) { for (int i = 0; i < num_layer; ++i) {
const LayerParameter &layer = param.layer(i); const LayerParameter &layer = param.layer(i);
const string &layer_name = layer.name();
const string &param_layer_name = layer.name();


// Skip some layer types // Skip some layer types
if (skiped_layer_type_.find(layer.type()) != skiped_layer_type_.end()) { if (skiped_layer_type_.find(layer.type()) != skiped_layer_type_.end()) {
GELOGI("Skip layer %s", layer_name.c_str());
GELOGI("Skip layer %s", param_layer_name.c_str());
continue; continue;
} }


GELOGI("Parse layer %s", layer_name.c_str());
GELOGI("Parse layer %s", param_layer_name.c_str());


vector<string> need_share_layers; vector<string> need_share_layers;


for (auto p_iter = params_share_map.begin(); p_iter != params_share_map.end(); ++p_iter) { for (auto p_iter = params_share_map.begin(); p_iter != params_share_map.end(); ++p_iter) {
if (find(p_iter->second.begin(), p_iter->second.end(), layer_name) != p_iter->second.end()) {
GELOGI("Layer: %s need share weights !", layer_name.c_str());
if (find(p_iter->second.begin(), p_iter->second.end(), param_layer_name) != p_iter->second.end()) {
GELOGI("Layer: %s need share weights !", param_layer_name.c_str());
need_share_layers = p_iter->second; need_share_layers = p_iter->second;
} }
} }


if (need_share_layers.size() == 0) { if (need_share_layers.size() == 0) {
need_share_layers.push_back(layer_name);
need_share_layers.push_back(param_layer_name);
} }


for (auto share_iter = need_share_layers.begin(); share_iter != need_share_layers.end(); ++share_iter) { for (auto share_iter = need_share_layers.begin(); share_iter != need_share_layers.end(); ++share_iter) {


+ 2
- 4
parser/common/parser_fp16_t.cc View File

@@ -675,8 +675,7 @@ static uint16_t Fp16Div(uint16_t v_1, uint16_t v_2) {
uint64_t m_tmp; uint64_t m_tmp;
if (e_a > e_b) { if (e_a > e_b) {
m_tmp = m_a; m_tmp = m_a;
uint16_t tmp;
tmp = e_a - e_b;
uint16_t tmp = e_a - e_b;
for (int i = 0; i < tmp; i++) { for (int i = 0; i < tmp; i++) {
m_tmp = m_tmp << 1; m_tmp = m_tmp << 1;
} }
@@ -690,8 +689,7 @@ static uint16_t Fp16Div(uint16_t v_1, uint16_t v_2) {
m_b = m_tmp; m_b = m_tmp;
} }
m_div = static_cast<float>(m_a * 1.0f / m_b); m_div = static_cast<float>(m_a * 1.0f / m_b);
fp16_t fp_div;
fp_div = m_div;
fp16_t fp_div = m_div;
ret = fp_div.val; ret = fp_div.val;
if (s_a != s_b) { if (s_a != s_b) {
ret |= kFp16SignMask; ret |= kFp16SignMask;


+ 1
- 2
parser/common/parser_utils.cc View File

@@ -214,8 +214,7 @@ Status ParserUtils::HandleInputContext(const NodePtr &node,
// add control edge // add control edge
if (node->GetInControlAnchor() != nullptr) { if (node->GetInControlAnchor() != nullptr) {
for (const auto &out_anchor : node->GetInControlAnchor()->GetPeerAnchors()) { for (const auto &out_anchor : node->GetInControlAnchor()->GetPeerAnchors()) {
graphStatus ret = GraphUtils::AddEdge(out_anchor, peer_in_anchor->GetOwnerNode()->GetInControlAnchor());
if (ret != GRAPH_SUCCESS) {
if (GraphUtils::AddEdge(out_anchor, peer_in_anchor->GetOwnerNode()->GetInControlAnchor()) != GRAPH_SUCCESS) {
REPORT_CALL_ERROR("E19999", "add control edge from %s to %s failed.", REPORT_CALL_ERROR("E19999", "add control edge from %s to %s failed.",
out_anchor->GetOwnerNode()->GetName().c_str(), out_anchor->GetOwnerNode()->GetName().c_str(),
peer_in_anchor->GetOwnerNode()->GetName().c_str()); peer_in_anchor->GetOwnerNode()->GetName().c_str());


+ 2
- 2
parser/onnx/onnx_parser.cc View File

@@ -772,8 +772,8 @@ Status OnnxModelParser::AdaptAndFindAllOnnxGraph(ge::onnx::GraphProto &root_onnx
return FAILED; return FAILED;
} }


for (const auto &onnx_graph : onnx_graphs) {
onnx_graph_tasks.push(onnx_graph);
for (const auto &sub_onnx_graph : onnx_graphs) {
onnx_graph_tasks.push(sub_onnx_graph);
} }
for (const auto &itr : name_to_onnx_subgraph) { for (const auto &itr : name_to_onnx_subgraph) {
name_to_onnx_graph.emplace(itr.first, itr.second); name_to_onnx_graph.emplace(itr.first, itr.second);


+ 11
- 18
parser/tensorflow/tensorflow_parser.cc View File

@@ -1516,7 +1516,7 @@ Status TensorFlowModelParser::ParseAllGraph(const google::protobuf::Message *pro
if (tensorflow_op_map.find(node_op) == tensorflow_op_map.end()) { if (tensorflow_op_map.find(node_op) == tensorflow_op_map.end()) {
GELOGW("%s not found in tensorflow_op_map.", node_op.c_str()); GELOGW("%s not found in tensorflow_op_map.", node_op.c_str());
} }
Status ret = AddNode(node_def, graph, scope_graph);
ret = AddNode(node_def, graph, scope_graph);
if (ret != SUCCESS) { if (ret != SUCCESS) {
GELOGE(ret, "Add op[%s] failed", node_def->name().c_str()); GELOGE(ret, "Add op[%s] failed", node_def->name().c_str());
DeleteFuisonNodeDef(); DeleteFuisonNodeDef();
@@ -1676,7 +1676,6 @@ Status TensorFlowModelParser::CheckInputNodeName(const string &input_node_name,
} }
} }


int32_t tmp_index = 0;
auto find = tmp_input_node_name.find(":"); auto find = tmp_input_node_name.find(":");
if (find == string::npos) { if (find == string::npos) {
*node_name = tmp_input_node_name; *node_name = tmp_input_node_name;
@@ -1684,7 +1683,7 @@ Status TensorFlowModelParser::CheckInputNodeName(const string &input_node_name,
if (index == nullptr) { if (index == nullptr) {
return SUCCESS; return SUCCESS;
} }
*index = tmp_index;
*index = 0;


return SUCCESS; return SUCCESS;
} }
@@ -2011,15 +2010,13 @@ Status TensorFlowModelParser::EraseNormalOpOutputIfChild(shared_ptr<ge::ScopeGra
for (auto iter = normal_op_node_context.output_map.begin(); iter != normal_op_node_context.output_map.end();) { for (auto iter = normal_op_node_context.output_map.begin(); iter != normal_op_node_context.output_map.end();) {
string output_node_name = iter->first; string output_node_name = iter->first;
ge::ScopeFusionOpInfo to_info; ge::ScopeFusionOpInfo to_info;
int32_t from_index = 0;
int32_t to_index = 0;

if (IsFusionOpChild(output_node_name, &to_info) && if (IsFusionOpChild(output_node_name, &to_info) &&
nodedef_map_[output_node_name]->op() != TENSORFLOWF_NODE_OP_CONST) { nodedef_map_[output_node_name]->op() != TENSORFLOWF_NODE_OP_CONST) {
// Fuse operator, update index // Fuse operator, update index
std::vector<std::pair<int32_t, int32_t>> &pairs = iter->second; std::vector<std::pair<int32_t, int32_t>> &pairs = iter->second;
int32_t to_index = 0;
for (auto &pair : pairs) { for (auto &pair : pairs) {
from_index = pair.first;
int32_t from_index = pair.first;
GE_RETURN_WITH_LOG_IF_ERROR(GetInPutIndex(scope_graph, to_info, pair.second, to_index), GE_RETURN_WITH_LOG_IF_ERROR(GetInPutIndex(scope_graph, to_info, pair.second, to_index),
"GetInPutIndex failed ,output_node_name %s.", output_node_name.c_str()); "GetInPutIndex failed ,output_node_name %s.", output_node_name.c_str());
tmp_output_map[to_info.fusion_node_name].push_back({from_index, to_index}); tmp_output_map[to_info.fusion_node_name].push_back({from_index, to_index});
@@ -2048,15 +2045,13 @@ Status TensorFlowModelParser::UpdateNormalOpContext(shared_ptr<ge::ScopeGraph> &
for (auto iter = normal_op_node_context.input_map.begin(); iter != normal_op_node_context.input_map.end();) { for (auto iter = normal_op_node_context.input_map.begin(); iter != normal_op_node_context.input_map.end();) {
string input_node_name = iter->first; string input_node_name = iter->first;
ge::ScopeFusionOpInfo from_info; ge::ScopeFusionOpInfo from_info;
int32_t from_index = 0;
int32_t to_index = 0;

if (IsFusionOpChild(input_node_name, &from_info) && if (IsFusionOpChild(input_node_name, &from_info) &&
nodedef_map_[input_node_name]->op() != TENSORFLOWF_NODE_OP_CONST) { nodedef_map_[input_node_name]->op() != TENSORFLOWF_NODE_OP_CONST) {
// Fuse operator, update index // Fuse operator, update index
std::vector<std::pair<int32_t, int32_t>> &pairs = iter->second; std::vector<std::pair<int32_t, int32_t>> &pairs = iter->second;
int32_t from_index = 0;
for (auto &pair : pairs) { for (auto &pair : pairs) {
to_index = pair.second;
int32_t to_index = pair.second;
GE_RETURN_WITH_LOG_IF_ERROR(GetOutPutIndex(scope_graph, from_info, pair.first, from_index), GE_RETURN_WITH_LOG_IF_ERROR(GetOutPutIndex(scope_graph, from_info, pair.first, from_index),
"GetOutPutIndex failed ,input_node_name %s.", input_node_name.c_str()); "GetOutPutIndex failed ,input_node_name %s.", input_node_name.c_str());
tmp_input_map[from_info.fusion_node_name].push_back({from_index, to_index}); tmp_input_map[from_info.fusion_node_name].push_back({from_index, to_index});
@@ -2282,7 +2277,7 @@ Status TensorFlowModelParser::ParseProto(const google::protobuf::Message *proto,
} }


// Do not exit immediately when there is an error, wait until all errors are collected before exiting // Do not exit immediately when there is an error, wait until all errors are collected before exiting
Status ret = AddFmkNodeDefToMap(node_def, op_node_name_list);
ret = AddFmkNodeDefToMap(node_def, op_node_name_list);
GE_CHK_STATUS_EXEC(ret, return PARAM_INVALID, "add node_def to map failed"); GE_CHK_STATUS_EXEC(ret, return PARAM_INVALID, "add node_def to map failed");
} }
PARSER_TIMESTAMP_END(AddFmkNodeDefToMap, "TensorFlowModelParser::AddFmkNodeDefToMap"); PARSER_TIMESTAMP_END(AddFmkNodeDefToMap, "TensorFlowModelParser::AddFmkNodeDefToMap");
@@ -3140,8 +3135,7 @@ Status TensorFlowModelParser::TrimGraphByInput(const domi::tensorflow::GraphDef
output_graph_def->Clear(); output_graph_def->Clear();
for (const NodeDef &node : filtered_graph_def.node()) { for (const NodeDef &node : filtered_graph_def.node()) {
if (input_nodes.count(node.name())) { if (input_nodes.count(node.name())) {
NodeDef placeholder_node;
placeholder_node = node;
NodeDef placeholder_node = node;
placeholder_node.clear_input(); placeholder_node.clear_input();
GE_IF_BOOL_EXEC(node.op() != "Placeholder", placeholder_node.set_op("Placeholder")); GE_IF_BOOL_EXEC(node.op() != "Placeholder", placeholder_node.set_op("Placeholder"));
domi::tensorflow::AttrValue attr_value; domi::tensorflow::AttrValue attr_value;
@@ -3214,8 +3208,7 @@ Status TensorFlowModelParser::TrimGraphByOutput(const domi::tensorflow::GraphDef
output_graph_def->Clear(); output_graph_def->Clear();
for (const NodeDef &node : filtered_graph_def.node()) { for (const NodeDef &node : filtered_graph_def.node()) {
if (input_nodes.count(node.name())) { if (input_nodes.count(node.name())) {
NodeDef placeholder_node;
placeholder_node = node;
NodeDef placeholder_node = node;
placeholder_node.clear_input(); placeholder_node.clear_input();
GE_IF_BOOL_EXEC(node.op() != "Placeholder", placeholder_node.set_op("Placeholder")); GE_IF_BOOL_EXEC(node.op() != "Placeholder", placeholder_node.set_op("Placeholder"));
domi::tensorflow::AttrValue attr_value; domi::tensorflow::AttrValue attr_value;
@@ -3737,8 +3730,8 @@ void TensorFlowModelParser::UpdateInnerInputMap(const string &fusion_op_name, Op
std::map<std::string, std::vector<std::pair<int32_t, int32_t>>> tmp_input_map; std::map<std::string, std::vector<std::pair<int32_t, int32_t>>> tmp_input_map;
for (auto iter = op_node_context.input_map.begin(); iter != op_node_context.input_map.end();) { for (auto iter = op_node_context.input_map.begin(); iter != op_node_context.input_map.end();) {
string src_name = iter->first; string src_name = iter->first;
std::vector<std::pair<int32_t, int32_t>> &input_idx = iter->second;
if (src_name == ge::kInputFromFusionScope) { if (src_name == ge::kInputFromFusionScope) {
std::vector<std::pair<int32_t, int32_t>> &input_idx = iter->second;
for (const auto &in_pair : input_idx) { for (const auto &in_pair : input_idx) {
if (in_pair.second != kControlSlot) { if (in_pair.second != kControlSlot) {
auto data = remap_data_input[fusion_op_name + std::to_string(in_pair.first)]; auto data = remap_data_input[fusion_op_name + std::to_string(in_pair.first)];
@@ -3784,8 +3777,8 @@ void TensorFlowModelParser::UpdateInnerOutputMap(const string &fusion_op_name, O
std::map<std::string, std::vector<std::pair<int32_t, int32_t>>> tmp_output_map; std::map<std::string, std::vector<std::pair<int32_t, int32_t>>> tmp_output_map;
for (auto iter = op_node_context.output_map.begin(); iter != op_node_context.output_map.end();) { for (auto iter = op_node_context.output_map.begin(); iter != op_node_context.output_map.end();) {
string dst_name = iter->first; string dst_name = iter->first;
std::vector<std::pair<int32_t, int32_t>> &output_idx = iter->second;
if (dst_name == ge::kOutputToFusionScope) { if (dst_name == ge::kOutputToFusionScope) {
std::vector<std::pair<int32_t, int32_t>> &output_idx = iter->second;
for (const auto &out_pair : output_idx) { for (const auto &out_pair : output_idx) {
if (out_pair.second != kControlSlot) { if (out_pair.second != kControlSlot) {
auto data_outputs = remap_data_output[fusion_op_name + std::to_string(out_pair.second)]; auto data_outputs = remap_data_output[fusion_op_name + std::to_string(out_pair.second)];


+ 2
- 3
parser/tensorflow/tensorflow_reshape_parser.cc View File

@@ -33,9 +33,6 @@ Status TensorFlowReshapeParser::ParseDesc(const domi::tensorflow::AttrValue &att
GE_CHK_BOOL_RET_STATUS(TensorFlowUtil::ParseFromAttrValueList(ge_desc, a_list, 0, tf_datatype), PARAM_INVALID, GE_CHK_BOOL_RET_STATUS(TensorFlowUtil::ParseFromAttrValueList(ge_desc, a_list, 0, tf_datatype), PARAM_INVALID,
"parse ge_desc failed."); "parse ge_desc failed.");
uint32_t size_type = 1; uint32_t size_type = 1;
int64_t real_size = 1;
int64_t tmp_dim = 0;

auto data_type = ge_desc.GetDataType(); auto data_type = ge_desc.GetDataType();
bool type_ret = ge::TypeUtils::GetDataTypeLength(data_type, size_type); bool type_ret = ge::TypeUtils::GetDataTypeLength(data_type, size_type);
GE_IF_BOOL_EXEC(!type_ret, GE_IF_BOOL_EXEC(!type_ret,
@@ -45,6 +42,8 @@ Status TensorFlowReshapeParser::ParseDesc(const domi::tensorflow::AttrValue &att
ge::TypeUtils::DataTypeToSerialString(data_type).c_str()); ge::TypeUtils::DataTypeToSerialString(data_type).c_str());
return PARAM_INVALID); return PARAM_INVALID);
// calculate size // calculate size
int64_t tmp_dim = 0;
int64_t real_size = 1;
for (uint32_t j = 0; j < ge_desc.GetShape().GetDimNum(); ++j) { for (uint32_t j = 0; j < ge_desc.GetShape().GetDimNum(); ++j) {
tmp_dim = ge_desc.GetShape().GetDim(j); tmp_dim = ge_desc.GetShape().GetDim(j);
GE_IF_BOOL_EXEC(tmp_dim < 0, real_size = tmp_dim * (-1) * real_size; continue;); GE_IF_BOOL_EXEC(tmp_dim < 0, real_size = tmp_dim * (-1) * real_size; continue;);


+ 2
- 3
parser/tensorflow/tensorflow_squeeze_parser.cc View File

@@ -37,9 +37,6 @@ Status TensorFlowSqueezeParser::ParseDesc(const domi::tensorflow::AttrValue &att
GE_CHK_BOOL_RET_STATUS(TensorFlowUtil::ParseFromAttrValueList(ge_desc, a_list, 0, tf_datatype), domi::PARAM_INVALID, GE_CHK_BOOL_RET_STATUS(TensorFlowUtil::ParseFromAttrValueList(ge_desc, a_list, 0, tf_datatype), domi::PARAM_INVALID,
"parse ge_desc failed."); "parse ge_desc failed.");
uint32_t size_type; uint32_t size_type;
int64_t real_size = 1;
int64_t tmp_dim = 0;

auto data_type = ge_desc.GetDataType(); auto data_type = ge_desc.GetDataType();
bool type_ret = ge::TypeUtils::GetDataTypeLength(data_type, size_type); bool type_ret = ge::TypeUtils::GetDataTypeLength(data_type, size_type);
GE_IF_BOOL_EXEC(!type_ret, GE_IF_BOOL_EXEC(!type_ret,
@@ -49,6 +46,8 @@ Status TensorFlowSqueezeParser::ParseDesc(const domi::tensorflow::AttrValue &att
ge::TypeUtils::DataTypeToSerialString(data_type).c_str()); ge::TypeUtils::DataTypeToSerialString(data_type).c_str());
return domi::PARAM_INVALID); return domi::PARAM_INVALID);
// calculate size // calculate size
int64_t real_size = 1;
int64_t tmp_dim = 0;
for (uint32_t j = 0; j < ge_desc.GetShape().GetDimNum(); ++j) { for (uint32_t j = 0; j < ge_desc.GetShape().GetDimNum(); ++j) {
tmp_dim = ge_desc.GetShape().GetDim(j); tmp_dim = ge_desc.GetShape().GetDim(j);
GE_IF_BOOL_EXEC(tmp_dim < 0, real_size = tmp_dim * (-1) * real_size; continue;); GE_IF_BOOL_EXEC(tmp_dim < 0, real_size = tmp_dim * (-1) * real_size; continue;);


+ 1
- 1
parser/tensorflow/tensorflow_util.cc View File

@@ -267,11 +267,11 @@ FMK_FUNC_HOST_VISIBILITY FMK_FUNC_DEV_VISIBILITY domi::Status TensorFlowUtil::Tr
GE_CHK_BOOL_RET_STATUS(ParseFromAttrValueList(ge_desc, a_list, i, tf_datatype), PARAM_INVALID, GE_CHK_BOOL_RET_STATUS(ParseFromAttrValueList(ge_desc, a_list, i, tf_datatype), PARAM_INVALID,
"parse ge_desc failed."); "parse ge_desc failed.");
uint32_t size_type = 1; uint32_t size_type = 1;
int64_t tmp_dim = 0;
auto data_type = ge_desc.GetDataType(); auto data_type = ge_desc.GetDataType();
GE_CHK_BOOL_RET_STATUS(ge::TypeUtils::GetDataTypeLength(data_type, size_type), PARAM_INVALID, GE_CHK_BOOL_RET_STATUS(ge::TypeUtils::GetDataTypeLength(data_type, size_type), PARAM_INVALID,
"dataType no define size , parse ge_desc failed."); "dataType no define size , parse ge_desc failed.");
// get size // get size
int64_t tmp_dim = 0;
for (uint32_t j = 0; j < ge_desc.GetShape().GetDimNum(); ++j) { for (uint32_t j = 0; j < ge_desc.GetShape().GetDimNum(); ++j) {
tmp_dim = ge_desc.GetShape().GetDim(j); tmp_dim = ge_desc.GetShape().GetDim(j);




Loading…
Cancel
Save