|
- /**
- * Copyright 2019-2020 Huawei Technologies Co., Ltd
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
-
- #include <gtest/gtest.h>
-
- #define protected public
- #define private public
- #include "parser/common/op_parser_factory.h"
- #include "parser/tensorflow/tensorflow_parser.h"
- #include "graph/operator_reg.h"
- #include "register/op_registry.h"
- #include "external/register/register.h"
- #include "parser/common/register_tbe.h"
- #include "st/parser_st_utils.h"
- #include "tests/depends/ops_stub/ops_stub.h"
- #include "parser/common/acl_graph_parser_util.h"
- #include "metadef/third_party/graphengine/inc/external/ge/ge_api_types.h"
- #include "omg/parser/parser_factory.h"
- #include "common/pre_checker.h"
- #include "common/util.h"
- #include "external/parser/tensorflow_parser.h"
- #include "parser/tensorflow/tensorflow_constant_parser.h"
- #include "common/types.h"
- #include "parser/common/op_def/variable_op.h"
- #include "parser/tensorflow/tensorflow_ref_switch_parser.h"
- #include "parser/tensorflow/tensorflow_fusion_op_parser.h"
- #include "parser/tensorflow/tensorflow_auto_mapping_parser_adapter.h"
- #include "parser/common/op_def/arg_op.h"
- #include "parser/tensorflow/tensorflow_fusion_custom_parser_adapter.h"
- #include "parser/tensorflow/tensorflow_reshape_parser.h"
- #include "parser/tensorflow/tensorflow_custom_parser_adapter.h"
- #include "parser/tensorflow/tensorflow_squeeze_parser.h"
- #include "parser/tensorflow/graph_functiondef.h"
- #include "parser/tensorflow/graph_optimizer.h"
- #include "cce/dnn_base_def.hpp"
- #undef protected
- #undef private
-
- using namespace std;
- using namespace domi::tensorflow;
- using namespace domi;
- using namespace cce;
- using namespace testing;
- using namespace std;
- using namespace google::protobuf;
-
- static const string GRAPH_DEFAULT_NAME = "default";
-
- namespace ge {
- class STestTensorflowParser : public testing::Test {
- protected:
- void SetUp() {
- ParerSTestsUtils::ClearParserInnerCtx();
- }
-
- void TearDown() {}
-
- public:
- void RegisterCustomOp();
- };
-
- static Status ParseParams(const google::protobuf::Message* op_src, ge::Operator& op_dest) {
- return SUCCESS;
- }
-
- static Status ParseParamByOpFunc(const ge::Operator &op_src, ge::Operator& op_dest) {
- return SUCCESS;
- }
-
- void STestTensorflowParser::RegisterCustomOp() {
- REGISTER_CUSTOM_OP("Add")
- .FrameworkType(domi::TENSORFLOW)
- .OriginOpType("Add")
- .ParseParamsFn(ParseParams);
-
- std::vector<OpRegistrationData> reg_datas = domi::OpRegistry::Instance()->registrationDatas;
- for (auto reg_data : reg_datas) {
- OpRegistrationTbe::Instance()->Finalize(reg_data);
- domi::OpRegistry::Instance()->Register(reg_data);
- }
- domi::OpRegistry::Instance()->registrationDatas.clear();
- }
-
- namespace {
- NodeDef* AddNode(GraphDef& graph, string type, string name)
- {
- NodeDef* nodeDef = graph.add_node();
- nodeDef->set_op(type);
- nodeDef->set_name(name);
-
- tensorflow::OpDef op_def;
- string op_def_string;
- op_def.SerializeToString(&op_def_string);
-
- tensorflow::AttrValue value;
- value.set_s(op_def_string);
- nodeDef->mutable_attr()->insert({"op_def", value});
- return nodeDef;
- }
-
- void AddInput(NodeDef* src, NodeDef* dst, int srcIndex)
- {
- if(srcIndex == -1){
- dst->add_input("^"+src->name());
- } else {
- if (srcIndex == 0) {
- dst->add_input(src->name());
- } else {
- dst->add_input(src->name() + ":" + std::to_string(srcIndex));
- }
- {
- auto input = (*dst->mutable_attr())[ge::ATTR_NAME_INPUT_TENSOR_DESC].mutable_list()->add_func();
- tensorflow::AttrValue val1;
- val1.set_i(0);
- (*input->mutable_attr())["serialize_format"] = val1;
- tensorflow::AttrValue val2;
- val2.set_i(tensorflow::DT_FLOAT);
- (*input->mutable_attr())["serialize_datatype"] = val2;
- tensorflow::AttrValue val3;
- val3.mutable_list()->add_i(10);
- (*input->mutable_attr())["serialize_shape"] = val3;
- }
-
- {
- auto output = (*src->mutable_attr())[ge::ATTR_NAME_OUTPUT_TENSOR_DESC].mutable_list()->add_func();
- tensorflow::AttrValue val1;
- val1.set_i(0);
- (*output->mutable_attr())["serialize_format"] = val1;
- tensorflow::AttrValue val2;
- val2.set_i(tensorflow::DT_FLOAT);
- (*output->mutable_attr())["serialize_datatype"] = val2;
- tensorflow::AttrValue val3;
- val3.mutable_list()->add_i(10);
- (*output->mutable_attr())["serialize_shape"] = val3;
- }
- }
- }
-
- NodeDef *initNodeDef()
- {
- NodeDef * nodeDef = new NodeDef();
- nodeDef->set_op("Const");
- ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = nodeDef->mutable_attr();
-
- //设置 T属性
- domi::tensorflow::AttrValue t_attr_value;
- t_attr_value.set_type(domi::tensorflow::DT_INT32);
- (*node_attr_map)[TENSORFLOW_ATTR_T] = t_attr_value;
-
- domi::tensorflow::AttrValue dtype_attr_value;
- dtype_attr_value.set_type(domi::tensorflow::DT_INT32);
- (*node_attr_map)[TENSORFLOW_ATTR_DTYPE] = dtype_attr_value;
-
- // out_put
- domi::tensorflow::AttrValue outputs_attr_value;
- ::tensorflow::AttrValue_ListValue* list = outputs_attr_value.mutable_list();
- list->add_s("MatMul");
- (*node_attr_map)[TENSORFLOW_ATTR_OUTPUT_OP] = outputs_attr_value;
-
- // 设置 tensor 属性
- domi::tensorflow::AttrValue value_attr_value;
- tensorflow::TensorProto* tensor = value_attr_value.mutable_tensor();
- tensorflow::TensorShapeProto* tensor_shape = tensor->mutable_tensor_shape();
- tensor_shape->clear_dim();
- tensor_shape->add_dim()->set_size(4);
- tensor_shape->add_dim()->set_size(6);
- tensor->set_dtype(domi::tensorflow::DT_INT32);
-
- float *addr = new float[24];
- for (int32_t i = 0; i < 24; i++) {
- *(addr + i) = 1.0 + i;
- }
- tensor->set_tensor_content((void *)addr, 24 * sizeof(float));
-
- (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
- delete[] addr;
- return nodeDef;
- }
-
- NodeDef * initOpNodeDef_VariableV2()
- {
- NodeDef * nodeDef = new NodeDef();
- nodeDef->set_op("VariableV2");
- google::protobuf::Map<std::string, tensorflow::AttrValue > *node_attr_map = nodeDef->mutable_attr();
-
- //设置data_format属性
- domi::tensorflow::AttrValue format_attr_value;
- format_attr_value.set_s("_FZ");
- (*node_attr_map)[VAR_ATTR_FORMAT] = format_attr_value;
-
- domi::tensorflow::AttrValue type_attr;
- type_attr.set_type(domi::tensorflow::DT_FLOAT);
- (*node_attr_map)[VAR_ATTR_DTYPE] = type_attr;
-
- domi::tensorflow::AttrValue container_attr_value;
- container_attr_value.set_s("container");
- (*node_attr_map)[VAR_ATTR_CONTAINER] = container_attr_value;
-
- domi::tensorflow::AttrValue shard_name_attr_value;
- shard_name_attr_value.set_s("shard_name");
- (*node_attr_map)[VAR_ATTR_SHARED_NAME] = shard_name_attr_value;
-
- domi::tensorflow::AttrValue shape_attr_value;
- shape_attr_value.mutable_shape()->add_dim()->set_size(1);
- shape_attr_value.mutable_shape()->add_dim()->set_size(2);
- shape_attr_value.mutable_shape()->add_dim()->set_size(3);
- shape_attr_value.mutable_shape()->add_dim()->set_size(4);
- (*node_attr_map)[ge::VAR_ATTR_SHAPE] = shape_attr_value;
-
- domi::tensorflow::AttrValue shape;
- shape.mutable_list()->add_i((int64)32);
- shape.mutable_list()->add_i((int64)32);
- shape.mutable_list()->add_i((int64)14);
- shape.mutable_list()->add_i((int64)14);
-
- //设置data_format属性
- domi::tensorflow::AttrValue df_attr_value;
- domi::tensorflow::AttrValue df_attr_value2;
- df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
-
- df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
- (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
- //设置padding属性
- domi::tensorflow::AttrValue pad_attr_value;
- domi::tensorflow::AttrValue pad_attr_value2;
- pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
- (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
- pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
-
- domi::tensorflow::NameAttrList name_attr_list;
- name_attr_list.set_name(std::to_string(0));
- name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
- name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
- name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
- domi::tensorflow::AttrValue output_tensor_descs;
- *(output_tensor_descs.mutable_list()->add_func()) = name_attr_list;
- nodeDef->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, output_tensor_descs});
- return nodeDef;
- }
-
- NodeDef *initOpNodeDef_TemporaryVariable()
- {
- NodeDef * nodeDef = new NodeDef();
- nodeDef->set_op("TemporaryVariable");
- google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
-
- //设置dtype属性
- domi::tensorflow::AttrValue type_attr;
- type_attr.set_type(domi::tensorflow::DT_FLOAT);
- (*node_attr_map)[VAR_ATTR_DTYPE] = type_attr;
-
- //设置var_name属性
- domi::tensorflow::AttrValue var_name_attr_value;
- var_name_attr_value.set_s("temporary_variable_name");
- (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
-
- //设置shape属性
- domi::tensorflow::AttrValue shape_attr_value;
- shape_attr_value.mutable_shape()->add_dim()->set_size(1);
- shape_attr_value.mutable_shape()->add_dim()->set_size(2);
- shape_attr_value.mutable_shape()->add_dim()->set_size(3);
- shape_attr_value.mutable_shape()->add_dim()->set_size(4);
- (*node_attr_map)[ge::VAR_ATTR_SHAPE] = shape_attr_value;
-
- domi::tensorflow::AttrValue shape;
- shape.mutable_list()->add_i((int64)32);
- shape.mutable_list()->add_i((int64)32);
- shape.mutable_list()->add_i((int64)14);
- shape.mutable_list()->add_i((int64)14);
-
- //设置data_format属性
- domi::tensorflow::AttrValue df_attr_value2;
- df_attr_value2.set_s(TENSORFLOWF_TENSOR_NHWC);
- (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value2;
- domi::tensorflow::AttrValue df_attr_value;
- df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
-
- //设置padding属性
- domi::tensorflow::AttrValue pad_attr_value2;
- pad_attr_value2.set_s(TENSORFLOWF_OP_PADDING_SAME);
- (*node_attr_map)[TENSORFLOW_ATTR_PADDING] = pad_attr_value2;
- domi::tensorflow::AttrValue pad_attr_value;
- pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
-
- domi::tensorflow::NameAttrList name_attr_list;
- name_attr_list.set_name(std::to_string(0));
- name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
- name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
- name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
- domi::tensorflow::AttrValue output_tensor_descs;
- *(output_tensor_descs.mutable_list()->add_func()) = name_attr_list;
- nodeDef->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, output_tensor_descs});
- return nodeDef;
- }
-
- NodeDef *fusioninitNodeDef(int index)
- {
- NodeDef * nodeDef = new NodeDef();
- ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = nodeDef->mutable_attr();
-
- //设置 type属性
- domi::tensorflow::AttrValue dtype_attr_value ;
-
- if (index == 0) {
- dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
- } else if (index == 1) {
- dtype_attr_value.set_type(domi::tensorflow::DT_INT32);
- } else if (index == 2) {
- dtype_attr_value.set_type(tensorflow::DT_HALF);
- }
- (*node_attr_map)[ge::TENSORFLOW_ATTR_DTYPE] = dtype_attr_value;
- //设置data_format属性
- domi::tensorflow::AttrValue df_attr_value;
- df_attr_value.set_s(TENSORFLOWF_TENSOR_NCHW);
- (*node_attr_map)[TENSORFLOW_ATTR_DATA_FORMAT] = df_attr_value;
-
- // 设置 tensor 属性
- domi::tensorflow::AttrValue value_attr_value;
- ::tensorflow::TensorProto* tensor = value_attr_value.mutable_tensor();
- ::tensorflow::TensorShapeProto* tensor_shape = tensor->mutable_tensor_shape();
- tensor_shape->clear_dim();
- ::tensorflow::TensorShapeProto_Dim* dim = tensor_shape->add_dim();
- dim->set_name("tensor dim");
- dim->set_size(1);
-
- if (index == 0) {
- tensor->set_dtype(domi::tensorflow::DT_FLOAT);
- float *addr = new float[1];
- *addr = 1.0;
- tensor->set_tensor_content((void *)addr, sizeof(float));
- (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
- delete[] addr;
- } else if (index == 1) {
- tensor->set_dtype(domi::tensorflow::DT_INT32);
- int32_t *addr = new int32_t[1];
- *addr = 1;
- tensor->set_tensor_content((void *)addr, sizeof(int32_t));
- (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
- delete[] addr;
- } else if (index == 2) {
- tensor->set_dtype(tensorflow::DT_HALF);
- tensor->add_half_val(1);
- (*node_attr_map)[TENSORFLOW_ATTR_VALUE] = value_attr_value;
- }
- return nodeDef;
- }
-
- NodeDef *MallocNodeDef(const string &name, const string &type) {
- NodeDef* node_def = new (std::nothrow) NodeDef();
- if (node_def != nullptr) {
- node_def->set_name(name);
- node_def->set_op(type);
- }
- return node_def;
- }
-
- void GenOriginNodeDef(ge::TensorFlowModelParser *tensorflow_parser, vector<string> &node_name_list) {
- NodeDef* pre_node_a = MallocNodeDef("pre_node_a", "Const");
- EXPECT_NE(pre_node_a, nullptr);
- {
- ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_a->mutable_attr();
- tensorflow::AttrValue attr_dtype;
- attr_dtype.set_type(tensorflow::DT_FLOAT);
- (*node_attr_map)["dtype"] = attr_dtype;
- tensorflow::AttrValue attr_value;
- tensorflow::TensorProto* tensor = attr_value.mutable_tensor();
- tensor->add_bool_val(true);
- tensor->set_dtype(tensorflow::DT_BOOL);
- (*node_attr_map)["value"] = attr_value;
- }
- tensorflow_parser->nodedef_map_["pre_node_a"] = pre_node_a;
- node_name_list.push_back("pre_node_a");
-
- NodeDef* pre_node_ctrl_in = MallocNodeDef("pre_node_ctrl_in", "Const");
- EXPECT_NE(pre_node_ctrl_in, nullptr);
- {
- ::google::protobuf::Map< ::std::string, ::tensorflow::AttrValue >* node_attr_map = pre_node_ctrl_in->mutable_attr();
- tensorflow::AttrValue attr_dtype;
- attr_dtype.set_type(tensorflow::DT_FLOAT);
- (*node_attr_map)["dtype"] = attr_dtype;
- tensorflow::AttrValue attr_value;
- tensorflow::TensorProto* tensor = attr_value.mutable_tensor();
- tensor->add_bool_val(true);
- tensor->set_dtype(tensorflow::DT_BOOL);
- (*node_attr_map)["value"] = attr_value;
- }
- tensorflow_parser->nodedef_map_["pre_node_ctrl_in"] = pre_node_ctrl_in;
- node_name_list.push_back("pre_node_ctrl_in");
-
- NodeDef* post_node_b = MallocNodeDef("post_node_b", "Identity");
- EXPECT_NE(post_node_b, nullptr);
- tensorflow_parser->nodedef_map_["post_node_b"] = post_node_b;
- node_name_list.push_back("post_node_b");
-
- NodeDef* post_node_c = MallocNodeDef("post_node_c", "Identity");
- EXPECT_NE(post_node_c, nullptr);
- tensorflow_parser->nodedef_map_["post_node_c"] = post_node_c;
- node_name_list.push_back("post_node_c");
-
- NodeDef* post_node_d = MallocNodeDef("post_node_d", "Identity");
- EXPECT_NE(post_node_d, nullptr);
- tensorflow_parser->nodedef_map_["post_node_d"] = post_node_d;
- node_name_list.push_back("post_node_d");
- }
-
- void FreeNodeDefMap(ge::TensorFlowModelParser *tensorflow_parser, set<string> &malloc_node_name_list) {
- for (auto &item : tensorflow_parser->nodedef_map_) {
- if (item.second != nullptr && malloc_node_name_list.count(item.first) > 0) {
- delete (item.second);
- item.second = nullptr;
- }
- }
- }
-
- void GenFusionScopesResult(shared_ptr<ScopeGraph> &scope_graph, FusionScopesResult *fusion_rlt,
- const string &fusion_op_name) {
- if (fusion_rlt == nullptr) {
- return;
- }
- fusion_rlt->InsertInputs("scope_node_1", {0}); // scope input 0
- fusion_rlt->InsertOutputs("scope_node_m", {0}); // scope output 0
- fusion_rlt->InsertOutputs("scope_node_n", {1}); // scope output 1
-
- fusion_rlt->SetType(ge::kScopeToMultiNodes);
- fusion_rlt->SetName(fusion_op_name);
- fusion_rlt->SetDescription("Description for fusion node");
-
- // Add inner nodes in sequence.
- auto node1 = fusion_rlt->AddInnerNode("inner_node_1", "Unique"); // add inner node1
- CHECK_INNER_NODE_CONDITION(node1 != nullptr, fusion_rlt);
- auto ret = node1
- ->InsertInput(ge::kInputFromFusionScope, 0) // Input from 0th of boundary (a)
- .InsertOutput(ge::kOutputToFusionScope, 0) // Output to 0th of boundary (b)
- .InsertOutput("inner_node_2", 0) // Output to input 0th of internal node 2
- .BuildInnerNode(); // Construct an internal Operator
- CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
- string str_val = "This is a string.";
- node1->MutableOperator()->SetAttr("key1", 2); // Set integer attribute
- node1->MutableOperator()->SetAttr("key2", str_val); // Set the string attribute
- node1->MutableOperator()->SetAttr("key3", true); // Set boolean attribute
-
- auto node2 = fusion_rlt->AddInnerNode("inner_node_2", "Identity"); // add inner node2
- CHECK_INNER_NODE_CONDITION(node2 != nullptr, fusion_rlt);
- ret = node2
- ->InsertInput("inner_node_1", 1) // The input comes from the 1st output of internal node 1
- .InsertOutput("inner_node_3", 0) // Output to input 0th of internal node 3
- .BuildInnerNode();
- CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
- node2->SetInputFormat("x", "NHWC");
- node2->SetOutputFormat("y", "NHWC");
-
- auto node3 = fusion_rlt->AddInnerNode("inner_node_3", "Identity"); // add inner node3
- CHECK_INNER_NODE_CONDITION(node3 != nullptr, fusion_rlt);
- ret = node3
- ->InsertInput("inner_node_2", 0) // The input comes from the 0th output of internal node 2
- .InsertOutput(ge::kOutputToFusionScope, 1) // Output to 1st of boundary (c)
- .BuildInnerNode();
- CHECK_INNER_NODE_CONDITION(ret == ge::GRAPH_SUCCESS, fusion_rlt);
-
- scope_graph->impl_->AddFusionScopesResult(fusion_rlt);
- }
-
- void GenOriginContext(ge::TensorFlowModelParser *tensorflow_parser, const string &fusion_op_name) {
- // op_node_context for fusion op
- ge::OpNodeContext op_node_context;
- op_node_context.input_map["pre_node_a"].push_back({0, 0});
- op_node_context.input_map["pre_node_ctrl_in"].push_back({-1, -1}); // ctrl edges
- op_node_context.output_map["post_node_b"].push_back({0, 0});
- op_node_context.output_map["post_node_c"].push_back({1, 0});
- op_node_context.output_map["post_node_d"].push_back({-1, -1});
- op_node_context.output_map["_Retval"].push_back({0, 1});
- // ctrl edges
- tensorflow_parser->op_node_context_map_[fusion_op_name] = op_node_context;
- tensorflow_parser->SaveEdgesControlInfo(fusion_op_name, -1);
-
- // op_node_context for pre_node_a
- ge::OpNodeContext op_node_context_a;
- op_node_context_a.output_map[fusion_op_name].push_back({0, 0});
- tensorflow_parser->op_node_context_map_["pre_node_a"] = op_node_context_a;
-
- // op_node_context for pre_node_ctrl_in
- ge::OpNodeContext op_node_context_ctrl_in;
- op_node_context_ctrl_in.output_map[fusion_op_name].push_back({-1, -1}); // ctrl edges
- tensorflow_parser->op_node_context_map_["pre_node_ctrl_in"] = op_node_context_ctrl_in;
-
- // op_node_context for post_node_b
- ge::OpNodeContext op_node_context_b;
- op_node_context_b.input_map[fusion_op_name].push_back({0, 0});
- tensorflow_parser->op_node_context_map_["post_node_b"] = op_node_context_b;
-
- // op_node_context for post_node_c
- ge::OpNodeContext op_node_context_c;
- op_node_context_c.output_map["post_node_d"].push_back({0, 0});
- tensorflow_parser->op_node_context_map_["post_node_c"] = op_node_context_c;
-
- // op_node_context for post_node_d
- ge::OpNodeContext op_node_context_d;
- op_node_context_d.input_map[fusion_op_name].push_back({-1, -1}); // ctrl edges
- tensorflow_parser->op_node_context_map_["post_node_d"] = op_node_context_d;
-
- // op_node_context for Retval
- ge::OpNodeContext op_node_context_Retval;
- op_node_context_d.input_map["post_node_d"].push_back({-1, -1});
- op_node_context_c.output_map["fusion_op_name"].push_back({0,1});
- tensorflow_parser->op_node_context_map_["_Retval"] = op_node_context_Retval;
- tensorflow_parser->SaveEdgesControlInfo("op_node_context_Retval", -1);
-
- string fusion_op_type = ge::kScopeToMultiNodes;
- string description = "fusion op description";
- tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type);
- tensorflow_parser->fusion_op_type_map_[fusion_op_name].push_back(description);
- }
-
- void register_tbe_op() {
- std::vector<OpRegistrationData> registrationDatas = OpRegistry::Instance()->registrationDatas;
- for (OpRegistrationData reg_data : registrationDatas) {
- OpRegistrationTbe::Instance()->Finalize(reg_data);
- OpRegistry::Instance()->Register(reg_data);
- }
- OpRegistry::Instance()->registrationDatas.clear();
- }
-
- NodeDef *initNodeDef_axis_dims() {
- NodeDef *nodeDef = new NodeDef();
- google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef->mutable_attr();
-
- //设置T属性
- domi::tensorflow::AttrValue dtype_attr_value ;
- dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
- (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
-
- //设置strides属性
- domi::tensorflow::AttrValue axis_attr_value;
- ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
- list->add_i(1);
- list->add_i(2);
- (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
- (*node_attr_map)[ge::SQUEEZE_ATTR_DIMS] = axis_attr_value;
-
- return nodeDef;
- }
-
- NodeDef *initNodeDef_dims() {
- NodeDef *nodeDef = new NodeDef();
- ::google::protobuf::Map<std::string, tensorflow::AttrValue > *node_attr_map = nodeDef->mutable_attr();
-
- //设置T属性
- domi::tensorflow::AttrValue dtype_attr_value ;
- dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
- (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
-
- //设置strides属性
- domi::tensorflow::AttrValue axis_attr_value;
- ::tensorflow::AttrValue_ListValue* list = axis_attr_value.mutable_list();
- list->add_i(1);
- list->add_i(2);
- (*node_attr_map)[ge::SQUEEZE_ATTR_DIMS] = axis_attr_value;
- return nodeDef;
- }
-
- void CreateOpDef(const string& _name, const string& _type, ge::OpDescPtr opDef) {
- tensorflow::OpDef tsOpDef;
- tsOpDef.set_name(_name);
- tensorflow::OpDef_ArgDef* outArgDef = tsOpDef.add_output_arg();
- outArgDef->set_name(_name);
- outArgDef->set_description("outArgDef");
- outArgDef->set_type((tensorflow::DataType)3);
-
- if ((_name == "A") || (_name == "B")) {
- tensorflow::OpDef_ArgDef* argDef1 = tsOpDef.add_output_arg();
- string name = _name+"t";
- argDef1->set_name(name);
- argDef1->set_description("this is a test 2");
- argDef1->set_type((tensorflow::DataType)3);
- }
- if ((_name == "C") ) {
- outArgDef->set_number_attr("num");
- }
- if ((_name == "D") ) {
- outArgDef->set_type_list_attr("type_list");
- }
-
- string strTsOpDef;
- tsOpDef.SerializeToString(&strTsOpDef);
- ge::AttrUtils::SetStr(opDef, "op_def", strTsOpDef);
-
- tensorflow::NodeDef nodedef;
- nodedef.set_name(_name);
- nodedef.set_op(_name);
-
- string name("op_def");
- tensorflow::AttrValue value;
- value.set_s(strTsOpDef);
- TensorFlowUtil::AddNodeAttr(name, value, &nodedef);
- value.set_i(1);
- TensorFlowUtil::AddNodeAttr("num", value, &nodedef);
- value.mutable_list();
- TensorFlowUtil::AddNodeAttr("type_list", value, &nodedef);
-
- string strNodeDef;
- nodedef.SerializeToString(&strNodeDef);
- ge::GeAttrValue::BYTES nodedefBytes;
- nodedefBytes = ge::GeAttrValue::BYTES::CopyFrom((uint8_t*)strNodeDef.data(), strNodeDef.length());
- ge::AttrUtils::SetBytes(opDef, "node_def", nodedefBytes);
-
- if ((_name== "S") || (_name == "K")) {
- int index = 0;
- ge::AttrUtils::SetInt(opDef, "T", 1);
- ge::AttrUtils::SetInt(opDef, "arg_index", index);
- ge::AttrUtils::SetInt(opDef, "ret_index", index);
- }
- }
-
- ge::NodePtr AddNode(ge::ComputeGraphPtr graph, const string& _name, const string& _type,int32_t i_n, int32_t o_n) {
- ge::OpDescPtr opDef = std::make_shared<ge::OpDesc>();
- opDef->SetName(_name);
- opDef->SetType(_type);
- for(int32_t i = 0; i < i_n; i++) {
- ge::GeTensorDesc input;
- input.SetDataType((ge::DataType)1);
- opDef->AddInputDesc(input);
- }
-
- for(int32_t i = 0;i < o_n; i++) {
- ge::GeTensorDesc output;
- output.SetDataType((ge::DataType)1);
- opDef->AddOutputDesc(output);
- }
- CreateOpDef(_name, _type, opDef);
- return graph->AddNode(opDef);
- }
-
- void MakeDagGraph(ge::ComputeGraphPtr graph, const string& input_node_type) {
- ge::NodePtr node_s = AddNode(graph, "S", parser::DATA,1,1);
- ge::NodePtr node_a = AddNode(graph, "A", "testa",1,2);
- ge::NodePtr node_b = AddNode(graph, "B", "testb",1,2);
- ge::NodePtr node_c = AddNode(graph, "C", "testc",1,1);
- ge::NodePtr node_d = AddNode(graph, "D", "testd",1,1);
- ge::NodePtr node_e = AddNode(graph, "E", "teste",1,1);
- ge::NodePtr node_f = AddNode(graph, "F", "testf",1,1);
- ge::NodePtr node_g = AddNode(graph, "G", "testg",2,1);
- ge::NodePtr node_h = AddNode(graph, "H", "testh",1,1);
- ge::NodePtr node_i = AddNode(graph, "I", "testi",1,1);
- ge::NodePtr node_j = AddNode(graph, "J", "testj",2,1);
- ge::NodePtr node_k = AddNode(graph, "K", parser::NETOUTPUT,1,1);
-
- ge::GraphUtils::AddEdge(node_s->GetOutDataAnchor(0), node_a->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(0), node_b->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_a->GetOutDataAnchor(1), node_c->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(0), node_d->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_b->GetOutDataAnchor(1), node_e->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_c->GetOutDataAnchor(0), node_g->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_d->GetOutDataAnchor(0), node_f->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_e->GetOutDataAnchor(0), node_g->GetInDataAnchor(1));
- ge::GraphUtils::AddEdge(node_f->GetOutDataAnchor(0), node_h->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_g->GetOutDataAnchor(0), node_j->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_h->GetOutDataAnchor(0), node_i->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_i->GetOutDataAnchor(0), node_j->GetInDataAnchor(1));
- ge::GraphUtils::AddEdge(node_j->GetOutDataAnchor(0), node_k->GetInDataAnchor(0));
- ge::GraphUtils::AddEdge(node_h->GetOutControlAnchor(), node_j->GetInControlAnchor());
- }
-
- void ChangeDataType(tensorflow::NodeDef* node_tf, int32_t data_type)
- {
- domi::tensorflow::AttrValue input_attr_value;
- google::protobuf::Map<std::string, tensorflow::AttrValue>* attr = node_tf->mutable_attr();
- google::protobuf::Map<std::string, tensorflow::AttrValue>::const_iterator it = attr->find(ge::ATTR_NAME_INPUT_TENSOR_DESC);
- if (it != attr->end()) {
- input_attr_value = it->second;
- }
- (*attr)[ge::ATTR_NAME_INPUT_TENSOR_DESC] = input_attr_value;
- }
- }
-
- namespace {
- REG_OP(Data)
- .INPUT(x, TensorType::ALL())
- .OUTPUT(y, TensorType::ALL())
- .ATTR(index, Int, 0)
- .OP_END_FACTORY_REG(Data)
-
- REG_OP(Add)
- .INPUT(x1, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
- DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
- DT_COMPLEX64, DT_STRING}))
- .INPUT(x2, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
- DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
- DT_COMPLEX64, DT_STRING}))
- .OUTPUT(y, TensorType({DT_FLOAT, DT_INT32, DT_INT64, DT_FLOAT16, DT_INT16,
- DT_INT8, DT_UINT8, DT_DOUBLE, DT_COMPLEX128,
- DT_COMPLEX64, DT_STRING}))
- .OP_END_FACTORY_REG(Add)
- }
-
- static Status FusionParserParams(const std::vector<const google::protobuf::Message *> inside_nodes, ge::Operator &op) {
- return domi::SUCCESS;
- }
-
- static MemBuffer* MemBufferFromFile(const char *path)
- {
- char path_temp[PATH_MAX + 1] = {0x00};
- if(strlen(path) > PATH_MAX || nullptr == realpath(path, path_temp)) {
- return nullptr;
- }
- FILE *fp = fopen(path_temp, "r+");
- if (fp == nullptr) {
- return nullptr;
- }
-
- // get model file length
- if (0 != fseek(fp, 0, SEEK_END)) {
- fclose(fp);
- return nullptr;
- }
- long file_length = ftell(fp);
- if (fseek(fp, 0, SEEK_SET)) {
- fclose(fp);
- return nullptr;
- }
- if (file_length <= 0) {
- fclose(fp);
- return nullptr;
- }
-
- // alloc model buffer
- void *data = malloc((unsigned int)file_length);
- if (!data) {
- fclose(fp);
- return nullptr;
- }
-
- // read file into memory
- uint32_t read_size = (uint32_t)fread(data, 1, (unsigned int)file_length, fp);
-
- // check if read success
- if ((long)read_size != file_length) {
- free(data);
- data = nullptr;
- fclose(fp);
- return nullptr;
- }
-
- // close model file
- fclose(fp);
-
- // create an MemBuffer
- MemBuffer* membuf = new MemBuffer();
- if (!membuf) {
- free(data);
- data = nullptr;
- return nullptr;
- }
- membuf->data = malloc((unsigned int)read_size);
-
- // set size && data
- membuf->size = (uint32_t)read_size;
- memcpy((char*)membuf->data, (char*)data, read_size);
- free(data);
- return membuf;
- }
-
-
- /// placeholder0 placeholder1
- /// | /\ /\ |
- /// | / \/ \ |
- /// | / /\ \ |
- /// | | / \ | |
- /// | add0 mul0 |
- /// | / /c | \ |
- /// mul1 --- / | add1
- /// \ | |
- /// \ ---- add2 |
- /// | |
- /// retval0 retval1
-
- void CreateGraphDef(domi::tensorflow::GraphDef &graph_def) {
- // 1. add node
- auto placeholder0 = graph_def.add_node();
- auto placeholder1 = graph_def.add_node();
- auto add0 = graph_def.add_node();
- auto add1 = graph_def.add_node();
- auto mul0 = graph_def.add_node();
- auto mul1 = graph_def.add_node();
- auto add2 = graph_def.add_node();
- auto retval0 = graph_def.add_node();
- auto retval1 = graph_def.add_node();
-
- // 2. set info
- placeholder0->set_name("placeholder0");
- placeholder0->set_op("PlaceHolder");
- placeholder1->set_name("placeholder1");
- placeholder1->set_op("PlaceHolder");
-
- add0->set_name("add0");
- add0->set_op("Add");
- add1->set_name("add1");
- add1->set_op("Add");
- add2->set_name("add2");
- add2->set_op("Add");
-
- mul0->set_name("mul0");
- mul0->set_op("Mul");
- mul1->set_name("mul1");
- mul1->set_op("Mul");
-
- retval0->set_name("retval0");
- retval0->set_op("_RetVal");
- retval1->set_name("retval1");
- retval1->set_op("_RetVal");
-
- // 3. add edges
- add0->add_input("placeholder0");
- add0->add_input("placeholder1");
-
- mul0->add_input("placeholder0");
- mul0->add_input("placeholder1");
-
- mul1->add_input("placeholder0");
- mul1->add_input("add0");
- mul1->add_input("^mul0");
-
- add1->add_input("mul0");
- add1->add_input("placeholder1");
-
- add2->add_input("mul1");
- add2->add_input("mul0");
-
- retval0->add_input("add2:0");
- retval1->add_input("add1:0");
- }
-
- TEST_F(STestTensorflowParser, tensorflow_parser_success) {
- RegisterCustomOp();
-
- std::string case_dir = __FILE__;
- ParserOperator unused("Add");
- case_dir = case_dir.substr(0, case_dir.find_last_of("/"));
- std::string model_file = case_dir + "/origin_models/tf_add.pb";
- std::map<ge::AscendString, ge::AscendString> parser_params;
- ge::Graph graph;
- auto ret = ge::aclgrphParseTensorFlow(model_file.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
- ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
- auto output_nodes_info = compute_graph->GetGraphOutNodesInfo();
- ASSERT_EQ(output_nodes_info.size(), 1);
- EXPECT_EQ((output_nodes_info.at(0).first->GetName()), "add_test_1");
- EXPECT_EQ((output_nodes_info.at(0).second), 0);
- auto &net_out_name = ge::GetParserContext().net_out_nodes;
- ASSERT_EQ(net_out_name.size(), 1);
- EXPECT_EQ(net_out_name.at(0), "add_test_1:0");
- }
-
- TEST_F(STestTensorflowParser, tensorflow_model_Failed) {
- ge::Graph graph;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
-
- std::string modelFile = caseDir + "/origin_models/model.pb";
- auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, ge::SUCCESS);
-
- modelFile = caseDir + "/origin_models/test_depth_wise_conv2d.pb";
- status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, ge::GRAPH_FAILED);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_model_not_exist) {
- ge::Graph graph;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
-
- // model file is not exist
- std::string modelFile = caseDir + "/origin_models/conv2d_explicit1_pad.pb";
- auto status = ge::aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, ge::GRAPH_FAILED);
- }
-
- TEST_F(STestTensorflowParser, parser_tensorflow_model) {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- const char *model_file = modelFile.c_str();
- std::string op_name = "ge_ascend_irgraph";
- ge::Graph graph(op_name);
-
- std::map<ge::AscendString, ge::AscendString> parser_options = {
- {ge::AscendString(ge::ir_option::INPUT_FORMAT), ge::AscendString("NHWC")},
- };
- auto ret_graph = ge::aclgrphParseTensorFlow(model_file, parser_options, graph);
- EXPECT_EQ(ret_graph, ge::FAILED);
-
- // parser tensorflow model out_node_size is equal to index
- string graph_name;
- AclGrphParseUtil acl_graph_parse_util;
- std::map<AscendString, AscendString> out_nodes_with_node_and_index = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:1")}};
- ParerSTestsUtils::ClearParserInnerCtx();
- auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
- ret_graph = ge::aclgrphParseTensorFlow(model_file, graph);
- EXPECT_EQ(ret_graph, domi::FAILED);
-
- // parser tensorflow model success
- modelFile = caseDir + "/origin_models/model.pb";
- model_file = modelFile.c_str();
- out_nodes_with_node_and_index = {{AscendString(ge::ir_option::OUT_NODES), AscendString("x:0;y:0")}};
- ParerSTestsUtils::ClearParserInnerCtx();
- ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
- ret_graph = ge::aclgrphParseTensorFlow(model_file, graph);
- EXPECT_EQ(ret_graph, domi::SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_parser_to_json)
- {
- TensorFlowModelParser modelParser;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- std::string jsonFile = caseDir + "/origin_models/test.json";
- const char *model_file = modelFile.c_str();
- const char *json_file = jsonFile.c_str();
- Status ret = modelParser.ToJson(model_file, json_file);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_parserfrommemory_failed)
- {
- TensorFlowModelParser modelParser;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- const char *data = modelFile.c_str();
- uint32_t size = 1;
- ge::Graph graph;
- std::map<ge::AscendString, ge::AscendString> parser_params;
- Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- modelFile = caseDir + "/origin_models/tf_add.pb";
- parser_params = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
- ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
- ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
- ret = modelParser.ParseFromMemory(data, size, compute_graph);
- EXPECT_EQ(ret, INTERNAL_ERROR);
- }
-
- TEST_F(STestTensorflowParser, modelparser_parsefrommemory_success)
- {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- const char* tmp_tf_pb_model = modelFile.c_str();
- ge::Graph graph;
- std::map<ge::AscendString, ge::AscendString> parser_params;
- Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
- TensorFlowModelParser modelParser;
- MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model);
- PreChecker::Instance().HasError() == false;
- ret = modelParser.ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph);
- free(memBuffer->data);
- delete memBuffer;
- }
-
- TEST_F(STestTensorflowParser, weightsparser_parsefrommemory_success)
- {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- const char* tmp_tf_pb_model = modelFile.c_str();
- ge::Graph graph;
- std::map<ge::AscendString, ge::AscendString> parser_params;
- Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
- auto weights_parser = domi::WeightsParserFactory::Instance()->CreateWeightsParser(domi::TENSORFLOW);
- MemBuffer* memBuffer = MemBufferFromFile(tmp_tf_pb_model);
- ret = weights_parser->ParseFromMemory((char*)memBuffer->data, memBuffer->size, compute_graph);
- free(memBuffer->data);
- delete memBuffer;
- EXPECT_EQ(SUCCESS, ret);
- }
-
- std::string getGraphCallbackV2(string subgraph_name)
- {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- subgraph_name = caseDir + "/origin_models/tf_add.pb";
- return subgraph_name;
- }
-
- TEST_F(STestTensorflowParser, parser_ParseProtoWithSubgraphV2)
- {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- const std::string root_proto = caseDir + "/origin_models/tf_add.pb";
- ge::Graph graph;
- std::map<ge::AscendString, ge::AscendString> parser_params;
- Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
- domi::GetGraphCallbackV2 callback(&getGraphCallbackV2);
- TensorFlowModelParser parser;
- ret = parser.ParseProtoWithSubgraph(root_proto, callback, root_graph);
- }
-
- TEST_F(STestTensorflowParser, parser_ConvertToGeDataType)
- {
- // convert to ge type success
- const uint32_t type1 = domi::tensorflow::DataType::DT_FLOAT;
- TensorFlowModelParser parser;
- ge::DataType dataType = parser.ConvertToGeDataType(type1);
- ASSERT_EQ(dataType, ge::DataType::DT_FLOAT);
-
- const uint32_t type2 = 80; // invalid type
- dataType = parser.ConvertToGeDataType(type2);
- ASSERT_EQ(dataType, ge::DataType::DT_UNDEFINED);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_ParserProto_failed)
- {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- const std::string root_proto = caseDir + "/origin_models/avgpool3dgrad.pb.txt";
- domi::tensorflow::GraphDef graphDef;
- ge::Graph graph;
- std::map<ge::AscendString, ge::AscendString> parser_params;
- Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
- TensorFlowModelParser tensorflow_parser;
- ret = tensorflow_parser.ParseProto(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
- EXPECT_EQ(PARAM_INVALID, ret);
-
- // proto解析失败
- bool protoRet = parser::ReadProtoFromText(root_proto.c_str(), &graphDef);
- ASSERT_EQ(protoRet, false);
- ret = tensorflow_parser.ParseProto(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
- ASSERT_EQ(ret, PARAM_INVALID);
-
- std::string serialized_proto = "";
- ret = tensorflow_parser.ParseProto(serialized_proto, root_graph);
- ASSERT_EQ(ret, FAILED);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_parserAllGraph_failed)
- {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- const std::string root_proto = caseDir + "/origin_models/conv2d.pb";
- domi::tensorflow::GraphDef graphDef;
- CreateGraphDef(graphDef);
-
- auto no_op = graphDef.add_node();
- no_op->set_name("no_op");
- no_op->set_op("NoOp");
- no_op->add_input("placeholder0");
- no_op->add_input("placeholder1");
-
- ge::Graph graph;
- std::map<ge::AscendString, ge::AscendString> parser_params;
- Status ret = ge::aclgrphParseTensorFlow(root_proto.c_str(), parser_params, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- ge::ComputeGraphPtr root_graph = ge::GraphUtils::GetComputeGraph(graph);
- TensorFlowModelParser tensorflow_parser;
- ret = tensorflow_parser.ParseAllGraph(reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
- EXPECT_EQ(INTERNAL_ERROR, ret);
- }
-
- TEST_F(STestTensorflowParser, test_parse_acl_output_nodes)
- {
- AclGrphParseUtil acl_graph_parse_util;
- string graph_name;
- // case 1: Normal with 'node and index'
- ParerSTestsUtils::ClearParserInnerCtx();
- GetParserContext().type = domi::ONNX;
- std::map<AscendString, AscendString> out_nodes_with_node_and_index = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1")}};
- ParerSTestsUtils::ClearParserInnerCtx();
- auto ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_node_and_index, graph_name);
- ASSERT_EQ(ret, SUCCESS);
- EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2);
- EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2);
- EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0);
-
- // case 2: Normal with 'tensor name'
- ParerSTestsUtils::ClearParserInnerCtx();
- GetParserContext().type = domi::ONNX;
- std::map<AscendString, AscendString> out_nodes_with_tensor_name = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2")}};
- ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_with_tensor_name, graph_name);
- ASSERT_EQ(ret, SUCCESS);
- EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
- EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
- EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2);
-
- // case 3: Failed with 'node and index' before 'tensor name'
- ParerSTestsUtils::ClearParserInnerCtx();
- GetParserContext().type = domi::ONNX;
- std::map<AscendString, AscendString> out_nodes_mode_mixex_pre = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Out1:0;Out2:1;Out_tensor_1;Out_tensor_2")}};
- ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_pre, graph_name);
- ASSERT_EQ(ret, PARAM_INVALID);
- EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 2);
- EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 2);
- EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 0);
-
- // case 4: Failed with 'node and index' inserted in 'tensor name'
- ParerSTestsUtils::ClearParserInnerCtx();
- GetParserContext().type = domi::ONNX;
- std::map<AscendString, AscendString> out_nodes_mode_mixex_mid = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out1:0;Out2:1;Out_tensor_2")}};
- ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_mid, graph_name);
- ASSERT_EQ(ret, PARAM_INVALID);
- EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
- EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
- EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 1);
-
- // case 5: Failed with 'node and index' after 'tensor name'
- ParerSTestsUtils::ClearParserInnerCtx();
- GetParserContext().type = domi::ONNX;
- std::map<AscendString, AscendString> out_nodes_mode_mixex_post = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Out_tensor_1;Out_tensor_2;Out1:0;Out2:1")}};
- ret = acl_graph_parse_util.ParseParamsBeforeGraph(out_nodes_mode_mixex_post, graph_name);
- ASSERT_EQ(ret, PARAM_INVALID);
- EXPECT_EQ(ge::GetParserContext().user_out_nodes.size(), 0);
- EXPECT_EQ(ge::GetParserContext().out_nodes_map.size(), 0);
- EXPECT_EQ(ge::GetParserContext().user_out_tensors.size(), 2);
- }
-
- TEST_F(STestTensorflowParser, parse_AutoMappingByOp) {
- static const string KEY_STRING = "key_string";
- static const string KEY_INT = "key_int";
- static const string KEY_FLOAT = "key_float";
- static const string KEY_BOOL = "key_bool";
- static const string KEY_TYPE = "key_type";
- static const string VALUE_STRING = "string";
- static const int64_t VALUE_INT = 1;
- static const float VALUE_FLOAT = 1.0;
- static const bool VALUE_BOOL = true;
- static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
-
- std::cout << "test data_type value_type: " << (int64_t)VALUE_TYPE << std::endl;
- static const string VALUE_NAME = "test_name";
- ge::OpDescPtr op_desc = std::make_shared<ge::OpDesc>();
- NodeDef node_def;
- domi::tensorflow::AttrValue value;
- ge::Operator op = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc);
-
- node_def.set_name(VALUE_NAME);
- value.set_s(VALUE_STRING);
- TensorFlowUtil::AddNodeAttr(KEY_STRING, value, &node_def);
- value.set_i(VALUE_INT);
- TensorFlowUtil::AddNodeAttr(KEY_INT, value, &node_def);
- value.set_f(VALUE_FLOAT);
- TensorFlowUtil::AddNodeAttr(KEY_FLOAT, value, &node_def);
- value.set_b(VALUE_BOOL);
- TensorFlowUtil::AddNodeAttr(KEY_BOOL, value, &node_def);
- value.set_type(VALUE_TYPE);
- TensorFlowUtil::AddNodeAttr(KEY_TYPE, value, &node_def);
-
- domi::Status status = domi::AutoMappingFn(reinterpret_cast<google::protobuf::Message *>(&node_def), op);
- EXPECT_EQ(domi::SUCCESS, status);
- EXPECT_EQ(VALUE_NAME, op_desc->GetName());
-
- string value_string = "";
- ge::AttrUtils::GetStr(op_desc, KEY_STRING, value_string);
- EXPECT_EQ(VALUE_STRING, value_string);
-
- int64_t value_int = 0;
- ge::AttrUtils::GetInt(op_desc, KEY_INT, value_int);
- EXPECT_EQ(VALUE_INT, value_int);
-
- float value_float = 0.0;
- ge::AttrUtils::GetFloat(op_desc, KEY_FLOAT, value_float);
- EXPECT_EQ(VALUE_FLOAT, value_float);
-
- bool value_bool = false;
- ge::AttrUtils::GetBool(op_desc, KEY_BOOL, value_bool);
- EXPECT_EQ(VALUE_BOOL, value_bool);
-
- ge::DataType data_type = ge::DT_UNDEFINED;
- ge::AttrUtils::GetDataType(op_desc, KEY_TYPE, data_type);
- EXPECT_EQ(ge::DT_FLOAT, data_type);
-
- // test AutoMappingByOpFn
- ge::OpDescPtr op_desc_dest = std::make_shared<ge::OpDesc>();
- ge::Operator op_dest = ge::OpDescUtils::CreateOperatorFromOpDesc(op_desc_dest);
-
- status = domi::AutoMappingByOpFn(op, op_dest);
- EXPECT_EQ(domi::SUCCESS, status);
- EXPECT_EQ(VALUE_NAME, op_dest.GetName());
-
- value_string = "";
- ge::AttrUtils::GetStr(op_desc_dest, KEY_STRING, value_string);
- EXPECT_EQ(VALUE_STRING, value_string);
-
- value_int = 0;
- ge::AttrUtils::GetInt(op_desc_dest, KEY_INT, value_int);
- EXPECT_EQ(VALUE_INT, value_int);
-
- value_float = 0.0;
- ge::AttrUtils::GetFloat(op_desc_dest, KEY_FLOAT, value_float);
- EXPECT_EQ(VALUE_FLOAT, value_float);
-
- value_bool = false;
- ge::AttrUtils::GetBool(op_desc_dest, KEY_BOOL, value_bool);
- EXPECT_EQ(VALUE_BOOL, value_bool);
-
- data_type = ge::DT_UNDEFINED;
- ge::AttrUtils::GetDataType(op_desc_dest, KEY_TYPE, data_type);
- EXPECT_EQ(ge::DT_FLOAT, data_type);
- }
-
- TEST_F(STestTensorflowParser, parse_ParseNodeDef)
- {
- NodeDef * node_def = new NodeDef();
- node_def->set_name("test_name");
- node_def->set_op("PlaceholderWithDefault");
-
- bool isDatasetInit = true;
- TensorFlowModelParser model_parser;
- Status ret = model_parser.AdaptOpType(node_def, isDatasetInit);
- EXPECT_EQ(domi::SUCCESS, ret);
-
- node_def->set_op("Add");
- ret = model_parser.AdaptOpType(node_def, isDatasetInit);
- EXPECT_EQ(domi::SUCCESS, ret);
- delete node_def;
- }
-
- TEST_F(STestTensorflowParser, parse_AddFmkNode)
- {
- TensorFlowModelParser modelParser;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- ge::Graph graph;
- string graph_name;
- AclGrphParseUtil acl_graph_parse_util;
- std::map<ge::AscendString, ge::AscendString> parser_options = {{AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
- ParerSTestsUtils::ClearParserInnerCtx();
- Status ret = acl_graph_parse_util.ParseParamsBeforeGraph(parser_options, graph_name);
- ret = aclgrphParseTensorFlow(modelFile.c_str(), parser_options, graph);
- ASSERT_EQ(ret, SUCCESS);
-
- ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
- tensorflow::GraphDef *graphDef = new (std::nothrow) tensorflow::GraphDef();
- ScopePassManager pass_manager;
- std::shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graphDef);
-
- std::string fusion_op_name = "fusion_op_name";
- FusionScopesResult *fusion_rlt = new (std::nothrow) FusionScopesResult();
- EXPECT_NE(fusion_rlt, nullptr);
- fusion_rlt->Init();
- GenFusionScopesResult(scope_graph, fusion_rlt, fusion_op_name);
- GenOriginContext(&modelParser, fusion_op_name);
-
- // origin inner node def
- NodeDef* node_def = MallocNodeDef("scope_node_1", "Add");
- EXPECT_NE(node_def, nullptr);
- modelParser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def);
-
- bool train_flag_backup = ge::GetParserContext().train_flag;
- ge::GetParserContext().train_flag = true;
-
- REGISTER_CUSTOM_OP("Identity")
- .FrameworkType(domi::TENSORFLOW)
- .OriginOpType("Identity")
- .ParseParamsFn(ParseParams)
- .ImplyType(ImplyType::TVM);
- REGISTER_CUSTOM_OP("Constant")
- .FrameworkType(domi::TENSORFLOW)
- .OriginOpType("Const")
- .ParseParamsFn(ParseParams)
- .ImplyType(ImplyType::TVM);
-
- register_tbe_op();
-
- std::vector<std::string> node_name_list;
- GenOriginNodeDef(&modelParser, node_name_list);
- std::set<std::string> malloc_node_name_list(node_name_list.begin(), node_name_list.end());
- node_name_list.push_back(fusion_op_name);
-
- ret = modelParser.AddFmkNode(compute_graph, scope_graph, node_name_list, false);
- EXPECT_EQ(ret, PARAM_INVALID);
- EXPECT_EQ(modelParser.scope_inner_node_map_.size(), 0);
- EXPECT_EQ(modelParser.nodedef_map_.size(), 5);
-
- ret = modelParser.AddEdges(compute_graph);
- EXPECT_EQ(ret, SUCCESS);
-
- // release resource
- delete graphDef;
- delete node_def;
- modelParser.DeleteFuisonNodeDef();
- FreeNodeDefMap(&modelParser, malloc_node_name_list);
- ge::GetParserContext().train_flag = train_flag_backup;
- }
-
- TEST_F(STestTensorflowParser, parse_AddScopeInnerNode)
- {
- TensorFlowModelParser modelParser;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tf_add.pb";
- std::string op_name = "ge_ascend_irgraph";
- ge::Graph graph(op_name);
- ge::ComputeGraphPtr compute_graph = ge::GraphUtils::GetComputeGraph(graph);
- std::map<ge::AscendString, ge::AscendString> parser_params = {
- {AscendString(ge::ir_option::OUT_NODES), AscendString("Placeholder:0;Placeholder_1:0")}};
- Status ret = ge::aclgrphParseTensorFlow(modelFile.c_str(), parser_params, graph);
- EXPECT_EQ(ret, SUCCESS);
-
- std::mutex graph_mutex;
- tensorflow::NodeDef *node_def = new NodeDef();
- node_def->set_name("FastrcnnPredictions");
- node_def->set_op("FastrcnnPredictions");
- // can't find in scope_inner_node_map
- ret = modelParser.AddScopeInnerNode(&modelParser, compute_graph, &graph_mutex, node_def);
- EXPECT_EQ(ret, PARAM_INVALID);
- delete node_def;
- }
-
- TEST_F(STestTensorflowParser, dyncmic_rnn_scope_pass_plugin_test) {
- ge::Graph graph;
-
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/tensor_array.pb";
- std::map<ge::AscendString, ge::AscendString> params;
- string key ="enable_scope_fusion_passes";
- string value ="ScopeDynamicRNNPass";
- params.insert(std::make_pair(ge::AscendString(key.c_str()), ge::AscendString(value.c_str())));
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), params, graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, avgpool3dgrad_plugin_test_format_NDHWC) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/avgpool3dgrad_case_1.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_merge_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/merge.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, FAILED);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_no_op_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_no_op.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_identity_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_identity.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_constant_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_constant.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
-
- TensorFlowConstantParser constantParser;
- ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
- NodeDef* node_def = initNodeDef();
- node_def->set_name("Constant");
- auto params = constantParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(params, SUCCESS);
-
- auto value = constantParser.ParseValue(node_def, op_dest);
- EXPECT_EQ(value, SUCCESS);
-
- ConstantOperator op;
- auto type = constantParser.ParseDType(node_def, &op);
- EXPECT_EQ(type, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_reshpae_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_reshape.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
-
- TensorFlowReshapeParser parser;
- NodeDef * nodeDef = new NodeDef();
- ge::OpDescPtr opdef_ = make_shared<::ge::OpDesc>("","");
- google::protobuf::Map<std::string, tensorflow::AttrValue >* attr_map = nodeDef->mutable_attr();
- domi::tensorflow::AttrValue tshape_attr_value;
- tshape_attr_value.set_type(domi::tensorflow::DT_INT32);
- (*attr_map)[TENSORFLOW_ATTR_TSHAPE] = tshape_attr_value;
- domi::tensorflow::AttrValue t_attr_value;
- t_attr_value.set_type(domi::tensorflow::DT_FLOAT);
- (*attr_map)[TENSORFLOW_ATTR_T] = t_attr_value;
-
- Status ret = parser.ParseParams(nodeDef, opdef_);
- EXPECT_EQ(domi::SUCCESS, ret);
- delete nodeDef;
- }
-
- TEST_F(STestTensorflowParser, tensorflow_squeeze_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_sequeeze.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
-
- TensorFlowSqueezeParser parser;
- NodeDef *nodeDef = initNodeDef();
- ge::OpDescPtr opDef = make_shared<::ge::OpDesc>("Squeeze","Squeeze");
- Status ret = parser.ParseParams(nodeDef, opDef);
- EXPECT_EQ(ret, SUCCESS);
-
- NodeDef *nodeDef_dim = initNodeDef_dims();
- ret = parser.ParseParams(nodeDef_dim, opDef);
- EXPECT_EQ(SUCCESS, ret);
-
- NodeDef *nodeDef_axis_dims = initNodeDef_axis_dims();
- ret = parser.ParseParams(nodeDef_axis_dims, opDef);
- EXPECT_EQ(GRAPH_PARAM_INVALID, ret);
-
- static const string KEY_SHAPE_LIST = "key_shape_list";
- static const string KEY_TENSOR_LIST = "key_tensor_list";
- static const string KEY_DEFAULT = "key_default";
-
- NodeDef *nodeDef2 = new NodeDef();
- google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = nodeDef2->mutable_attr();
- domi::tensorflow::AttrValue dtype_attr_value ;
- dtype_attr_value.set_type(domi::tensorflow::DT_FLOAT);
- (*node_attr_map)[TENSORFLOW_ATTR_T] = dtype_attr_value;
- //设置strides属性
- tensorflow::AttrValue axis_attr_value;
- tensorflow::AttrValue_ListValue *list = axis_attr_value.mutable_list();
- list->add_i(1);
- list->add_i(2);
- (*node_attr_map)[ge::SQUEEZE_ATTR_AXIS] = axis_attr_value;
- domi::tensorflow::AttrValue value;
- domi::tensorflow::AttrValue df_attr_value;
- // df_attr_value.set_i((int64_t)ccTensorFormat_t::CC_TENSOR_NHWC);
-
- domi::tensorflow::AttrValue pad_attr_value;
- pad_attr_value.set_i((int64_t)tensorflow::DT_FLOAT);
-
- domi::tensorflow::AttrValue shape;
- shape.mutable_list()->add_i((int64)32);
- shape.mutable_list()->add_i((int64)32);
- shape.mutable_list()->add_i((int64)14);
-
- static const string KEY_TYPE_LIST = "key_type_list";
- const std::string ATTR_NAME_INPUT_TENSOR_DESC = "input_tensor_desc";
- const std::string ATTR_NAME_OUTPUT_TENSOR_DESC = "output_tensor_desc";
- static const domi::tensorflow::DataType VALUE_TYPE = domi::tensorflow::DataType::DT_FLOAT;
- value.clear_value();
- value.mutable_list()->add_type(VALUE_TYPE);
- TensorFlowUtil::AddNodeAttr(KEY_TYPE_LIST, value, nodeDef2);
-
- value.clear_value();
- domi::tensorflow::NameAttrList name_attr_list;
- name_attr_list.mutable_attr()->insert({"serialize_datatype", pad_attr_value});
- name_attr_list.mutable_attr()->insert({"serialize_format", df_attr_value});
- name_attr_list.mutable_attr()->insert({"serialize_shape", shape});
- *(value.mutable_list()->add_func()) = name_attr_list;
-
- nodeDef2->mutable_attr()->insert({ge::ATTR_NAME_INPUT_TENSOR_DESC, value});
- nodeDef2->mutable_attr()->insert({ge::ATTR_NAME_OUTPUT_TENSOR_DESC, value});
- ret = parser.ParseParams(nodeDef2, opDef);
- EXPECT_EQ(domi::SUCCESS, ret);
-
- delete nodeDef2;
- delete nodeDef_axis_dims;
- delete nodeDef_dim;
- delete nodeDef;
- }
-
- TEST_F(STestTensorflowParser, tensorflow_fill_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_fill.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_shape_n_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_shape_n.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_switch_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_switch.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
-
- TensorFlowRefSwitchParser refSwitchParser;
- ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
- NodeDef* node_def = initNodeDef();
- node_def->set_name("RefSwitch");
- auto params = refSwitchParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(params, SUCCESS);
-
- RefSwitchOperator op;
- auto parseRet = refSwitchParser.ParseT(node_def, &op);
- EXPECT_EQ(parseRet, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_enter_test) {
- ge::Graph graph;
- std::cout << __FILE__ << std::endl;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_enter.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_VariableV2_test) {
- ge::Graph graph;
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- std::string modelFile = caseDir + "/origin_models/test_VariableV2.pb";
- auto status = aclgrphParseTensorFlow(modelFile.c_str(), graph);
- EXPECT_EQ(status, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_fusion_op_parser_test)
- {
- TensorFlowFusionOpParser fusionOpParser;
- ge::OpDescPtr op_dest = make_shared<ge::OpDesc>("FusionOp", ge::parser::CONSTANT);
- int index = 0;
- NodeDef* node_def = fusioninitNodeDef(index);
- node_def->set_name("FusionOp");
- auto ret = fusionOpParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
-
- int32_t param = 1;
- ret = fusionOpParser.ParseParamFromConst(node_def, param);
- EXPECT_EQ(ret, SUCCESS);
-
- ret = fusionOpParser.ParseParamFromConst(node_def, param, index);
- EXPECT_EQ(ret, SUCCESS);
-
- float params = 0.0;
- ret = fusionOpParser.ParseParamFromConst(node_def, params);
- EXPECT_EQ(ret, SUCCESS);
-
- index = 2;
- node_def = fusioninitNodeDef(index);
- ret = fusionOpParser.ParseParamFromConst(node_def, params, index);
- EXPECT_EQ(ret, domi::PARAM_INVALID);
-
- ret = fusionOpParser.ParseHalfFromConst(node_def, params, 0);
- EXPECT_EQ(ret, SUCCESS);
-
- ret = fusionOpParser.ParseHalfFromConst(node_def, params, 3);
- EXPECT_EQ(ret, domi::PARAM_INVALID);
-
- node_def = fusioninitNodeDef(0);
- ret = fusionOpParser.ParseHalfFromConst(node_def, params, 3);
- EXPECT_EQ(ret, domi::PARAM_INVALID);
-
- static const float VALUE_FLOAT = 1.0;
- ge::GeTensorPtr weight = nullptr;
- ret = fusionOpParser.ParseWeightFromConst(node_def, weight);
- EXPECT_EQ(ret, domi::SUCCESS);
- EXPECT_NE(weight, nullptr);
-
- ge::DataType ge_data_type = weight->GetTensorDesc().GetDataType();
- EXPECT_EQ(ge_data_type, ge::DataType::DT_FLOAT);
-
- const uint8_t* data_buff = weight->GetData().GetData();
- size_t data_size = weight->GetData().size();
- EXPECT_NE(data_buff, nullptr);
- EXPECT_EQ(data_size, sizeof(float));
-
- float value_float = *((float*)data_buff);
- EXPECT_EQ(value_float, VALUE_FLOAT);
- delete node_def;
- }
-
- TEST_F(STestTensorflowParser, tensorflow_auto_mapping_parser_adapter_test)
- {
- ge::OpDescPtr op_dest = nullptr;
- Message *op_src = nullptr;
- TensorFlowAutoMappingParserAdapter autoMappingParser;
- NodeDef* node_def = initNodeDef();
- Status ret = autoMappingParser.ParseParams(op_src, op_dest);
- EXPECT_EQ(ret, PARAM_INVALID);
-
- ret = autoMappingParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, PARAM_INVALID);
-
- op_dest = make_shared<ge::OpDesc>("AutoMapping", ge::parser::CONSTANT);
- op_dest->SetType(ge::parser::EMPTY);
- ret = autoMappingParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
-
- op_dest->SetType(ge::parser::IDENTITYN);
- ret = autoMappingParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
-
- op_dest->SetType(ge::parser::SIZE);
- ret = autoMappingParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
-
- op_dest->SetType(ge::parser::SHAPE);
- ret = autoMappingParser.ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_fusion_custom_parser_adapter_test)
- {
- REGISTER_CUSTOM_OP("FusionCustom")
- .FrameworkType(domi::TENSORFLOW)
- .OriginOpType("FusionCustom")
- .FusionParseParamsFn(FusionParserParams)
- .ImplyType(ImplyType::TVM);
- register_tbe_op();
-
- auto graph = std::make_shared<ge::ComputeGraph>("FusionCustom");
- auto op_desc = std::make_shared<ge::OpDesc>("FusionCustom", "FusionCustom");
- auto node = graph->AddNode(op_desc);
-
- NodeDef *node_def = new NodeDef();
- std::vector<const NodeDef *> v_input_const1;
- v_input_const1.push_back(node_def);
-
- TensorFlowFusionCustomParserAdapter parser;
- domi::Status status = parser.ParseParams(v_input_const1, node);
- EXPECT_EQ(SUCCESS, status);
-
- ge::Operator op_src("pool", "pooling");
- std::vector<ge::Operator> v_input_const2;
- v_input_const2.push_back(op_src);
- Status ret = parser.ParseParams(v_input_const2, node);
- EXPECT_EQ(FAILED, ret);
- delete node_def;
- }
-
- TEST_F(STestTensorflowParser, tensorflow_custom_parser_adapter_test)
- {
- ge::Operator op_src("pool", "pooling");
- ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
- TensorFlowCustomParserAdapter parser;
- Status ret = parser.ParseParams(op_src, op_dest);
- EXPECT_EQ(ret, FAILED);
-
- REGISTER_CUSTOM_OP("Variable")
- .FrameworkType(domi::TENSORFLOW)
- .OriginOpType("VariableV2")
- .ParseParamsFn(ParseParams)
- .ParseParamsByOperatorFn(ParseParamByOpFunc)
- .ImplyType(ImplyType::CUSTOM);
- register_tbe_op();
-
- Operator opSrc(ge::parser::VARIABLE, "VariableV2");
- ret = parser.ParseParams(opSrc, op_dest);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_graph_functiondef_FindAttrValue_test)
- {
- GraphToFunctionDef functionDef;
- NodeDef *node_def = nullptr;
- std::string attr_name = "Const";
- tensorflow::AttrValue attr_value;
- bool ret = functionDef.FindAttrValue(node_def, attr_name, attr_value);
- EXPECT_EQ(ret, false);
-
- node_def = initNodeDef();
- attr_name = ge::ATTR_NAME_INPUT_TENSOR_DESC;
- node_def->set_name("Const");
- ret = functionDef.FindAttrValue(node_def, attr_name, attr_value);
- EXPECT_EQ(ret, false);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_graph_functiondef_BuildFunctionDef_test)
- {
- ge::ComputeGraphPtr subGraph = std::make_shared<ge::ComputeGraph>("default");
- string inputNodeType = "DATA";
- MakeDagGraph(subGraph, inputNodeType);
-
- FunctionDefLibrary library;
- tensorflow::NodeDef call_node_def;
- call_node_def.set_op("fusionop");
- call_node_def.set_name("fusionop");
-
- vector<ge::InDataAnchorPtr> in_anchor;
- vector<ge::OutDataAnchorPtr> out_anchor;
- for (ge::NodePtr node : subGraph->GetAllNodes()) {
- for (auto in : node->GetAllInDataAnchors()) {
- if (in->GetPeerOutAnchor() != nullptr && in->GetPeerOutAnchor()->GetOwnerNode()->GetOpDesc()->GetType() == parser::DATA) {
- in_anchor.push_back(in);
- }
- }
- for (auto out : node->GetAllOutDataAnchors()) {
- for (auto i : out->GetPeerInDataAnchors()) {
- if (i->GetOwnerNode()->GetOpDesc()->GetType() == parser::NETOUTPUT) {
- out_anchor.push_back(out);
- }
- }
- }
- }
- Status ret = GraphToFunctionDef::BuildFunctionDef(subGraph,
- "fusionop",
- &library,
- &call_node_def,
- in_anchor,
- out_anchor);
- EXPECT_EQ(domi::INTERNAL_ERROR, ret);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_CheckOpShapeDim_test)
- {
- NodeDef *node_def = initNodeDef();
- std::set<int> dims;
- dims.insert(1);
- dims.insert(2);
- bool valid = true;
- TensorFlowModelParser parser;
- Status ret = parser.CheckOpShapeDim(node_def, dims, valid);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_Scope_pass_test)
- {
- ScopePassManager passmanager;
- auto scope_graph = ge::parser::MakeShared<ge::ScopeGraph>();
- if (scope_graph == nullptr) {
- GELOGE(FAILED, "Scope graph make shared failed.");
- return;
- }
- if (scope_graph->Init() != SUCCESS) {
- GELOGE(FAILED, "Scope graph init failed.");
- return;
- }
-
- ge::TensorFlowModelParser tf_model_parser;
- std::vector<string> scope_passes_list = {"pass_1", "pass_2"};
- tf_model_parser.RunScopeFusionPass(scope_passes_list, passmanager, scope_graph);
- Status ret = tf_model_parser.RunScopeFusionPass(scope_passes_list, passmanager, scope_graph);
- EXPECT_NE(ge::SUCCESS, ret);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_variable_v2_parser_test)
- {
- TensorFlowCustomParserAdapter parser;
- ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
- NodeDef *node_def = initNodeDef();
- TensorFlowModelParser modelParser;
- std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
- std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Variable");
- shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, PARAM_INVALID);
-
- node_def->set_name("TemporaryVariable");
- node_def->set_op("TemporaryVariable");
- op_parser = factory->CreateOpParser("TemporaryVariable");
- tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, PARAM_INVALID);
-
- NodeDef *nodeDef_temporaryVariable = initOpNodeDef_TemporaryVariable();
- op_parser = factory->CreateOpParser("TemporaryVariable");
- tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- ret = tensorflow_op_parser->ParseParams(nodeDef_temporaryVariable, op_dest);
- EXPECT_EQ(ret, SUCCESS);
-
- NodeDef *nodeDef_VariableV2 = initOpNodeDef_VariableV2();
- op_parser = factory->CreateOpParser("Variable");
- tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- ret = tensorflow_op_parser->ParseParams(nodeDef_VariableV2, op_dest);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_var_is_initialized_op_test)
- {
- TensorFlowCustomParserAdapter parser;
- ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
- NodeDef *node_def = initNodeDef();
- TensorFlowModelParser modelParser;
- std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
- std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("VarIsInitializedOp");
- shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_arg_parser_test)
- {
- TensorFlowCustomParserAdapter parser;
- ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
- NodeDef *node_def = initNodeDef();
- TensorFlowModelParser modelParser;
- std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
- std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("_Arg");
- shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_frameworkop_parser_test)
- {
- TensorFlowCustomParserAdapter parser;
- ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
- NodeDef *node_def = initNodeDef();
- TensorFlowModelParser modelParser;
- std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
- std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("FrameworkOp");
- shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, PARAM_INVALID);
-
- ChangeDataType(node_def, tensorflow::DT_UINT16);
- ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, PARAM_INVALID);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_reshape_parser_test)
- {
- TensorFlowCustomParserAdapter parser;
- ge::OpDescPtr op_dest = std::make_shared<ge::OpDesc>();
- NodeDef *node_def = initNodeDef();
- TensorFlowModelParser modelParser;
- std::shared_ptr<OpParserFactory> factory = OpParserFactory::Instance(domi::TENSORFLOW);
- std::shared_ptr<OpParser> op_parser = factory->CreateOpParser("Reshape");
- shared_ptr<TensorFlowOpParser> tensorflow_op_parser = std::dynamic_pointer_cast<TensorFlowOpParser>(op_parser);
- Status ret = tensorflow_op_parser->ParseParams(node_def, op_dest);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_DefunToPartitionedCall_parser_test)
- {
- TensorFlowModelParser parser;
- NodeDef *node_def = initNodeDef();
- node_def->set_name("ShapeN");
- ge::OpDescPtr op = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
- Status ret = parser.DefunToPartitionedCall(node_def, op);
- EXPECT_EQ(ret, FAILED);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_TransNodeToOpDesc_parser_test)
- {
- TensorFlowModelParser parser;
- NodeDef *node_def = initNodeDef();
- node_def->set_name("ge::parser::DATA");
- std::string op_type = "ge::parser::DATA";
- ge::OpDescPtr op = make_shared<ge::OpDesc>("constant", ge::parser::CONSTANT);
- Status ret = parser.TransNodeToOpDesc(node_def, op, op_type);
- EXPECT_EQ(ret, FAILED);
- }
-
- domi::Status fusion_parse_param_by_op(const std::vector<ge::Operator> &op_src, ge::Operator &op) {
- return domi::SUCCESS;
- }
-
- TEST_F(STestTensorflowParser, Fusion_node_parse_params_success) {
- ge::ComputeGraphPtr compute_graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
-
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
- ASSERT_TRUE(NULL != model_parser);
- TensorFlowModelParser tensorflow_parser;
- domi::tensorflow::NodeDef node_def;
- node_def.set_name("data");
- node_def.set_op("FusionCustom");
-
- FusionParseParamByOpFunc function = fusion_parse_param_by_op;
- shared_ptr<ge::OpParserFactory> op_parser = ge::OpParserFactory::Instance(domi::TENSORFLOW);
- shared_ptr<OpParser> fusion_op_parser = op_parser->CreateFusionOpParser("FusionCustom");
-
- ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
- ge::OpDescPtr op = std::make_shared<ge::OpDesc>("data", "FusionCustom");
- ge::NodePtr node = std::make_shared<ge::Node>(op, graph);
-
- vector<const NodeDef *> node_defs;
- node_defs.push_back(&node_def);
-
- tensorflow_parser.fusion_op_nodedef_map_["data"] = node_defs;
- Status ret = tensorflow_parser.FusionNodeParseParams(fusion_op_parser, &node_def, node);
- EXPECT_EQ(domi::SUCCESS, ret);
- }
-
- TEST_F(STestTensorflowParser, Tensorflow_recordFusionResult_parser_test)
- {
- auto scope_graph = ge::parser::MakeShared<ge::ScopeGraph>();
- if (scope_graph == nullptr) {
- GELOGE(FAILED, "Scope graph make shared failed.");
- return;
- }
-
- if (scope_graph->Init() != SUCCESS) {
- GELOGE(FAILED, "Scope graph init failed.");
- return;
- }
-
- domi::tensorflow::NodeDef node_def;
- node_def.set_name("OP");
- FusionScopesResult *fusion_scope_rlt = new (std::nothrow) FusionScopesResult();
- if (fusion_scope_rlt == nullptr) {
- GELOGE(FAILED, "FusionScopesResult make shared failed.");
- return;
- }
- fusion_scope_rlt->Init();
- fusion_scope_rlt->SetName("OP");
- auto &impl_scope_graph = scope_graph->impl_;
- std::string scope_name = fusion_scope_rlt->Name();
- impl_scope_graph->fusion_results_.insert(std::make_pair(scope_name, fusion_scope_rlt));
- std::vector<ge::OperatorPtr> nodes;
- ge::OperatorPtr op = ge::parser::MakeShared<ge::Operator>("op_name", "op_type");
- if (op == nullptr) {
- GELOGE(FAILED, "Operator make shared failed.");
- return;
- }
- nodes.push_back(op);
- fusion_scope_rlt->impl_->AddNodes(nodes);
-
- ge::OpDescPtr opDesc = std::make_shared<ge::OpDesc>();
- ge::TensorFlowModelParser tf_model_parser;
- Status ret = tf_model_parser.RecordFusionResult(scope_graph, &node_def, opDesc);
- EXPECT_EQ(SUCCESS, ret);
- }
-
- TEST_F(STestTensorflowParser, Tensorflow_UpdateFusionOpContext_test)
- {
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
- TensorFlowModelParser tensorflow_parser;
- ScopeFusionOpInfo info;
- ge::OpNodeContext normal_op_node_context;
- ge::OpNodeContext fusion_op_node_context;
-
- /* 1.预置条件 */
- tensorflow::GraphDef *graph = new tensorflow::GraphDef();
- ScopePassManager passmanager;
- shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
- NodeDef * node1 = graph->add_node();
- node1->set_name("conv_conv5/BatchNorm/batchnorm/add");
- node1->set_op("Add");
- node1->add_input("conv_conv5/BatchNorm/moving_variance");
- node1->add_input("conv_conv5/BatchNorm/batchnorm/add/y");
-
- NodeDef * node2 = graph->add_node();
- node2->set_name("conv_conv5/BatchNorm/moving_variance");
- node2->set_op("Const");
-
- NodeDef * node3 = graph->add_node();
- node3->set_name("conv_conv5/BatchNorm/batchnorm/add/y");
- node3->set_op("Const");
-
- info.fusion_node_name = "conv_conv5/BatchNorm/batchnorm";
- info.fusion_op_type = ge::parser::FUSIONBATCHNORM;
- info.node_name = "conv_conv5/BatchNorm/batchnorm/add";
- info.description = "";
- info.scope_pass = false;
-
- EXPECT_EQ(scope_graph->impl_->GetFusionScopesResults(nullptr), nullptr);
- EXPECT_EQ(scope_graph->impl_->GetFusionScopesResults(node1), nullptr);
-
- Status ret = tensorflow_parser.UpdateFusionOpContext(scope_graph, info, fusion_op_node_context, normal_op_node_context);
- EXPECT_EQ(ret, domi::SUCCESS);
- delete graph;
- }
-
- TEST_F(STestTensorflowParser, Tensorflow_GetInOutPutIndex_scope_pass)
- {
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
- TensorFlowModelParser tensorflow_parser;
-
- tensorflow::GraphDef *graph = new tensorflow::GraphDef();
- ScopePassManager passmanager;
- shared_ptr<ScopeGraph> scope_graph = passmanager.BuildScopeGraph(graph);
- FusionScopesResult* fusion_rlt = new FusionScopesResult();
- fusion_rlt->Init();
- fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/ToInt32" ,{0}));
- fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/ToInt32" ,{0}));
- fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/ReverseSequence" ,{0, 1}));
- fusion_rlt->impl_->inputs_.insert(std::make_pair<string, vector<int32_t>>("bw/ReverseSequence" ,{1}));
-
- fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("concat" ,{0}));
- fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/while/Exit_3" ,{1}));
- fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("fw/fw/while/Exit_4" ,{2}));
- fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/while/Exit_3" ,{3}));
- fusion_rlt->impl_->outputs_.insert(std::make_pair<string, vector<int32_t>>("bw/bw/while/Exit_4" ,{4}));
- fusion_rlt->SetType("dynamic_rnn");
- fusion_rlt->SetName("dynamic_rnn_node1");
- scope_graph->impl_->AddFusionScopesResult(fusion_rlt);
-
- ScopeFusionOpInfo info1;
- info1.node_name = "fw/fw/ToInt32";
- info1.fusion_node_name = "dynamic_rnn_node1";
- info1.fusion_op_type = "dynamic_rnn";
- info1.description = "";
- info1.scope_pass = true;
-
- bool ignore = false;
- ignore = tensorflow_parser.FusionOpChildIgnore(scope_graph, info1);
- EXPECT_EQ(true, !ignore);
-
- ScopeFusionOpInfo info2;
- info2.node_name = "fw/fw/others";
- info2.fusion_node_name = "dynamic_rnn_node1";
- info2.fusion_op_type = "dynamic_rnn";
- info2.description = "";
- info2.scope_pass = true;
-
- ignore = tensorflow_parser.FusionOpChildIgnore(scope_graph, info2);
- EXPECT_EQ(true, ignore);
-
- ScopeFusionOpInfo input_node_info;
- input_node_info.node_name = "fw/fw/ToInt32";
- input_node_info.fusion_node_name = "dynamic_rnn_node1";
- input_node_info.fusion_op_type = "dynamic_rnn";
- input_node_info.description = "";
- input_node_info.scope_pass = true;
-
- ScopeFusionOpInfo output_node_info;
- output_node_info.node_name = "fw/fw/while/Exit_3";
- output_node_info.fusion_node_name = "dynamic_rnn_node1";
- output_node_info.fusion_op_type = "dynamic_rnn";
- output_node_info.description = "";
- output_node_info.scope_pass = true;
-
- int32_t old_index = 0, new_index = -1;
- Status ret = tensorflow_parser.GetInPutIndex(scope_graph, input_node_info, old_index, new_index);
- EXPECT_EQ(domi::SUCCESS, ret);
- EXPECT_EQ(true, (new_index == 0));
-
- ret = tensorflow_parser.GetOutPutIndex(scope_graph, output_node_info, old_index, new_index);
- EXPECT_EQ(domi::SUCCESS, ret);
- EXPECT_EQ(true, (new_index == 1));
- delete graph;
- }
-
- TEST_F(STestTensorflowParser, Tensorflow_AddFusionNodeDef_add_fusion_op_succ)
- {
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<domi::ModelParser> model_parser = factory->CreateModelParser(domi::TENSORFLOW);
- TensorFlowModelParser tensorflow_parser;
- string fusion_op_name = "dropout";
- string fusion_op_type = "Dropout";
- string description = "test/dropout";
- tensorflow_parser.fusion_op_type_map_[fusion_op_name].push_back(fusion_op_type);
- tensorflow_parser.fusion_op_type_map_[fusion_op_name].push_back(description);
-
- // op_node_context for fusion op
- ge::OpNodeContext op_node_context;
- op_node_context.input_map["pre_node_a"].push_back({0, 0});
- op_node_context.input_map["pre_node_b"].push_back({0, 1});
- tensorflow_parser.op_node_context_map_[fusion_op_name] = op_node_context;
-
- // origin inner node def
- NodeDef* node_def = new (std::nothrow) NodeDef();
- node_def->set_name("scope_node_1");
- node_def->set_op("Add");
- tensorflow_parser.fusion_op_nodedef_map_[fusion_op_name].push_back(node_def);
-
- ScopePassManager pass_manager;
- tensorflow::GraphDef *graph = new (std::nothrow) tensorflow::GraphDef();
- shared_ptr<ScopeGraph> scope_graph = pass_manager.BuildScopeGraph(graph);
- vector<string> node_name_list = {fusion_op_name};
- Status ret = tensorflow_parser.AddFusionNodeDef(scope_graph, node_name_list);
- EXPECT_EQ(ret, SUCCESS);
- EXPECT_EQ(tensorflow_parser.nodedef_map_.size(), 1);
- auto fusion_node_def = tensorflow_parser.nodedef_map_[fusion_op_name];
- EXPECT_NE(fusion_node_def, nullptr);
- EXPECT_EQ(fusion_node_def->op(), fusion_op_type);
-
- delete node_def;
- delete graph;
- tensorflow_parser.DeleteFuisonNodeDef();
- }
-
- TEST_F(STestTensorflowParser, remain_dpop_node)
- {
- ge::ComputeGraphPtr graph = std::make_shared<ge::ComputeGraph>(GRAPH_DEFAULT_NAME);
- ge::OpDescPtr op = std::make_shared<ge::OpDesc>("dpop_123", "FrameworkOp");
- ge::NodePtr node = std::make_shared<ge::Node>(op, graph);
- graph->AddNode(node);
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
- ASSERT_TRUE(NULL != model_parser);
-
- TensorFlowModelParser tensorflow_parser;
- Status ret = tensorflow_parser.RemoveIsolateNode(graph);
- EXPECT_EQ(domi::SUCCESS, ret);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_UpdateEdgesControlInfo_test)
- {
- TensorFlowModelParser model_parser;
- ge::ScopeFusionOpInfo info;
- info.fusion_node_name = "conv_conv5/BatchNorm/batchnorm";
- info.fusion_op_type = ge::parser::FUSIONBATCHNORM;
- info.node_name = "conv_conv5/BatchNorm/batchnorm/add";
- info.description = "";
- info.scope_pass = false;
- model_parser.UpdateEdgesControlInfo(info);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_OptimizeIdentityByOutput_test)
- {
- TensorFlowModelParser model_parser;
- NodeDef *node_def = new NodeDef();
- node_def->set_name("Placeholder");
- node_def->set_op("Placeholder_0");
- std::map<string, NodeDef *> nodedef_map;
- nodedef_map.emplace("Placeholder", node_def);
- std::string curr_node_name = "Placeholder";
- bool clear_input_flag = true;
- Status ret = model_parser.OptimizeIdentityByOutput(nodedef_map, curr_node_name, clear_input_flag);
- EXPECT_EQ(ret, INTERNAL_ERROR);
-
- GraphDef graph;
- curr_node_name = "pre_node_a";
- nodedef_map.emplace("pre_node_a", node_def);
- node_def->set_op("pre_node_a");
- GenOriginContext(&model_parser, curr_node_name);
- ret = model_parser.OptimizeIdentityByOutput(nodedef_map, curr_node_name, clear_input_flag);
- EXPECT_EQ(ret, SUCCESS);
- delete node_def;
- }
-
- TEST_F(STestTensorflowParser, tensorflow_OptimizeSnapShot_test)
- {
- TensorFlowModelParser model_parser;
- tensorflow::NodeDef *curr_mode_def = initNodeDef();
- std::map<string, NodeDef *> nodedef_map;
- nodedef_map.emplace("pre_node_a", curr_mode_def);
- std::pair<string, int> input_data;
- std::vector<string> control_list;
- std::string curr_node_name = "pre_node_a";
- GenOriginContext(&model_parser, curr_node_name);
- Status ret = model_parser.OptimizeSnapShot(curr_mode_def, nodedef_map, input_data, control_list);
- EXPECT_EQ(ret, INTERNAL_ERROR);
-
- curr_mode_def->set_name("pre_node_a");
- GenOriginContext(&model_parser, curr_node_name);
- ret = model_parser.OptimizeSnapShot(curr_mode_def, nodedef_map, input_data, control_list);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeSnapShot_test)
- {
- TensorFlowModelParser model_parser;
- tensorflow::GraphDef graph_def;
- tensorflow::NodeDef *curr_mode_def = initNodeDef();
- std::map<string, NodeDef *> nodedef_map;
- nodedef_map.emplace("pre_node_a", curr_mode_def);
- std::vector<NodeDef *> nodedef_to_optimize;
- nodedef_to_optimize.emplace_back(curr_mode_def);
- Status ret = model_parser.GraphDefOptimizeSnapShot(&graph_def, nodedef_map, nodedef_to_optimize);
- EXPECT_EQ(ret, FAILED);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_SetDestNodeName_test)
- {
- TensorFlowModelParser model_parser;
- GraphDef graph;
- auto arg0 = AddNode(graph, "_Arg", "arg0");
- auto identity0 = AddNode(graph, "Identity", "identity0");
- auto add0 = AddNode(graph, "Add", "add0");
-
- int32_t input_idx = 0;
- bool is_control = true;
- bool clear_input_flag = true;
- AddInput(arg0, identity0, 0);
- AddInput(identity0, add0, 0);
- Status ret = model_parser.SetDestNodeName(identity0, add0, input_idx, is_control, clear_input_flag);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_OptimizeDestroyTemporaryVariable_test)
- {
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
- TensorFlowModelParser tensorflow_parser;
-
- GraphDef graph;
- auto const0 = AddNode(graph, "Const", "Const0");
- auto tmpVar0 = AddNode(graph, "TemporaryVariable", "TemporaryVariable0");
- auto assign0 = AddNode(graph, "Assign", "Assign0");
- auto destroy0 = AddNode(graph, "DestroyTemporaryVariable", "DestroyTemporaryVariable0");
- auto add0 = AddNode(graph, "Add", "Add0");
-
- google::protobuf::Map< std::string, tensorflow::AttrValue> *node_attr_map = tmpVar0->mutable_attr();
- tensorflow::AttrValue var_name_attr_value;
- var_name_attr_value.set_s("temporary_variable_name");
- (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
-
- google::protobuf::Map<std::string, tensorflow::AttrValue>* node_attr_map_destroy = destroy0->mutable_attr();
- tensorflow::AttrValue var_name_attr_value_destroy;
- var_name_attr_value_destroy.set_s("destroy_temporary_variable_name");
- (*node_attr_map_destroy)[ge::VAR_ATTR_NAME] = var_name_attr_value_destroy;
-
- AddInput(tmpVar0, assign0, 0);
- AddInput(assign0, destroy0, 0);
- AddInput(const0, add0, 0);
- AddInput(destroy0, add0, 1);
-
- GraphDef* graphDef = &graph;
- int32_t no_input_node_size_original = 0;
- for (int w = 0; w < graphDef->node_size(); w++) {
- tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
- if (nodeTmp->input_size() == 0) {
- no_input_node_size_original++;
- }
- }
-
- Status ret = tensorflow_parser.GraphDefOptimize(graphDef);
- int32_t no_input_node_size_result = 0;
- for (int w = 0; w < graphDef->node_size(); w++) {
- tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
- if (nodeTmp->input_size() == 0) {
- no_input_node_size_result ++;
- }
- }
- ASSERT_EQ(ret, domi::FAILED);
- ASSERT_EQ(no_input_node_size_original, no_input_node_size_result);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_OptimizeDestroyTemporaryVariable_test2)
- {
- ModelParserFactory* factory = ModelParserFactory::Instance();
- shared_ptr<domi::ModelParser> model_parser= factory->CreateModelParser(domi::TENSORFLOW);
- TensorFlowModelParser tensorflow_parser;
-
- GraphDef graph;
- auto const0 = AddNode(graph, "Const", "Const0");
- auto tmpVar0 = AddNode(graph, "TemporaryVariable", "TemporaryVariable0");
- auto assign0 = AddNode(graph, "Assign", "Assign0");
- auto destroy0 = AddNode(graph, "DestroyTemporaryVariable", "DestroyTemporaryVariable0");
- auto add0 = AddNode(graph, "Add", "Add0");
-
- google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map = tmpVar0->mutable_attr();
- tensorflow::AttrValue var_name_attr_value;
- var_name_attr_value.set_s("temporary_variable_name");
- (*node_attr_map)[ge::VAR_ATTR_NAME] = var_name_attr_value;
-
- google::protobuf::Map<std::string, tensorflow::AttrValue> *node_attr_map_destroy = destroy0->mutable_attr();
- tensorflow::AttrValue var_name_attr_value_destroy;
- var_name_attr_value_destroy.set_s("temporary_variable_name");
- (*node_attr_map_destroy)[ge::VAR_ATTR_NAME] = var_name_attr_value_destroy;
-
- AddInput(tmpVar0, assign0, 0);
- AddInput(assign0, destroy0, 0);
- AddInput(const0, add0, 0);
- AddInput(destroy0, add0, 1);
-
- GraphDef* graphDef = &graph;
- int32_t no_input_node_size_original = 0;
- for (int w = 0; w < graphDef->node_size(); w++) {
- tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
- if (nodeTmp->input_size() == 0) {
- no_input_node_size_original ++;
- }
- }
-
- Status ret = tensorflow_parser.GraphDefOptimize(graphDef);
- int32_t no_input_node_size_result = 0;
- for (int w = 0; w < graphDef->node_size(); w++) {
- tensorflow::NodeDef* nodeTmp = graphDef->mutable_node(w);
- if (nodeTmp->input_size() == 0) {
- no_input_node_size_result ++;
- }
- }
- ASSERT_EQ(ret, domi::SUCCESS);
- ASSERT_EQ(no_input_node_size_original, (no_input_node_size_result - 1));
- }
-
- TEST_F(STestTensorflowParser, tensorflow_AddControlEdgeAfterRemoveInputs_test)
- {
- tensorflow::GraphDef graph_def;
- TensorFlowModelParser tensorflow_parser;
- tensorflow::NodeDef *node_def = initNodeDef();
- node_def->set_name("Add0");
- node_def->set_op("add");
- std::map<std::string, NodeDef *> all_node_map;
- all_node_map.emplace("Add0", node_def);
- std::vector<std::string> removed_inputs_vec;
- removed_inputs_vec.emplace_back("Add0");
- Status ret = tensorflow_parser.AddControlEdgeAfterRemoveInputs(&graph_def, node_def, all_node_map, removed_inputs_vec);
- EXPECT_EQ(ret, SUCCESS);
- }
-
- TEST_F(STestTensorflowParser, tensorflow_GraphDefOptimizeIdentity_test)
- {
- tensorflow::GraphDef graph_def;
- TensorFlowModelParser tensorflow_parser;
- tensorflow::NodeDef *node_def = initNodeDef();
- node_def->set_name("post_node_d");
-
- std::map<string, NodeDef *> nodedef_map;
- nodedef_map.emplace("post_node_d", node_def);
- nodedef_map.emplace("post_node_a", node_def);
- nodedef_map.emplace("post_node_b", node_def);
- std::vector<NodeDef *> nodedef_to_optimize;
- nodedef_to_optimize.emplace_back(node_def);
-
- std::string curr_node_name = "post_node_b";
- GenOriginContext(&tensorflow_parser, curr_node_name);
- Status ret = tensorflow_parser.GraphDefOptimizeIdentity(&graph_def, nodedef_map, nodedef_to_optimize);
- EXPECT_EQ(ret, ge::PARAM_INVALID);
- }
- TEST_F(STestTensorflowParser, tensorflow_optimizer_snapshot_no_retval_test) {
- std::string caseDir = __FILE__;
- std::size_t idx = caseDir.find_last_of("/");
- caseDir = caseDir.substr(0, idx);
- const std::string root_proto = caseDir + "/origin_models/test_snapshot.pb";
- domi::tensorflow::GraphDef graphDef;
-
- bool protoRet =
- parser::ReadProtoFromBinaryFile(root_proto.c_str(), &graphDef);
- ASSERT_EQ(protoRet, true);
-
- TensorFlowModelParser tensorflow_parser;
- ge::ComputeGraphPtr root_graph =
- ge::parser::MakeShared<ge::ComputeGraph>("tmp_graph");
- Status ret = tensorflow_parser.ParseProto(
- reinterpret_cast<google::protobuf::Message *>(&graphDef), root_graph);
- EXPECT_EQ(FAILED, ret);
- }
-
- } // namespace ge
|