You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test.sh 2.1 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. #!/bin/bash
  2. modules="data_processing timeseries_processing feature_analysis detection_algorithm reinforcement"
  3. #modules="data_processing timeseries_processing"
  4. #modules="detection_algorithm"
  5. for module in $modules
  6. do
  7. test_scripts=$(ls $module | grep -v -f tested_file.txt)
  8. #test_scripts=$(ls $module)
  9. for file in $test_scripts
  10. do
  11. for f in $tested_file
  12. do
  13. echo $f
  14. done
  15. echo $file
  16. # Test pipeline building
  17. #python primitive_tests/$file > tmp.txt 2>>tmp.txt
  18. python $module/$file > tmp.txt 2>>tmp.txt
  19. error=$(cat tmp.txt | grep 'Error' | wc -l)
  20. echo "\t#Pipeline Building Errors:" $error
  21. if [ "$error" -gt "0" ]
  22. then
  23. cat tmp.txt
  24. #rm tmp.txt
  25. break
  26. fi
  27. # Test on KPI dataset
  28. #python3 -m d3m runtime fit-produce -p pipeline.yml -r datasets/anomaly/kpi/TRAIN/problem_TRAIN/problemDoc.json -i datasets/anomaly/kpi/TRAIN/dataset_TRAIN/datasetDoc.json -t datasets/anomaly/kpi/TEST/dataset_TEST/datasetDoc.json -o results.csv -O pipeline_run.yml
  29. #python3 -m d3m runtime fit-produce -p pipeline.yml -r datasets/anomaly/kpi/TRAIN/problem_TRAIN/problemDoc.json -i datasets/anomaly/kpi/TRAIN/dataset_TRAIN/datasetDoc.json -t datasets/anomaly/kpi/TEST/dataset_TEST/datasetDoc.json -o results.csv 2>>tmp.txt
  30. # Test on Yahoo dataset
  31. #python3 -m d3m runtime fit-produce -p pipeline.yml -r datasets/anomaly/yahoo_sub_5/TRAIN/problem_TRAIN/problemDoc.json -i datasets/anomaly/yahoo_sub_5/TRAIN/dataset_TRAIN/datasetDoc.json -t datasets/anomaly/yahoo_sub_5/TEST/dataset_TEST/datasetDoc.json -o results.csv -O pipeline_run.yml
  32. python3 -m d3m runtime fit-produce -p example_pipeline.json -r ../datasets/anomaly/yahoo_sub_5/TRAIN/problem_TRAIN/problemDoc.json -i ../datasets/anomaly/yahoo_sub_5/TRAIN/dataset_TRAIN/datasetDoc.json -t ../datasets/anomaly/yahoo_sub_5/TEST/dataset_TEST/datasetDoc.json -o results.csv 2> tmp.txt
  33. error=$(cat tmp.txt | grep 'Error' | wc -l)
  34. echo "\t#Pipeline Running Errors:" $error
  35. if [ "$error" -gt "0" ]
  36. then
  37. cat tmp.txt
  38. #rm tmp.txt
  39. break
  40. fi
  41. echo $file >> tested_file.txt
  42. done
  43. done

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算