You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_pipeline_ensemble.py 2.0 kB

add ensemble method to pipeline Former-commit-id: 14cd2d7e2ec8c762b40d144557a6aa6564fb431b [formerly 90fc6cfc5d8f01b8b71ffe0cc65c7d3a7cefedd2] [formerly 6020a6b10fc005b6da9df9e10c6f04cd6826d417 [formerly 29650194e48adf9c61538148e64f1d8289a319e4]] [formerly 1018ccdba48e2acf41ee59c31c3092eef9bef274 [formerly 9918a6770431c08d9ce01f3ae836512774533cdd] [formerly 4be62ee58ea1660715415ac3e3cf7938aab44d69 [formerly 41c44bcbc5762fe177c43745786bcba6e5e32779]]] [formerly cf44ee98c029831c177251dceb6498acdd52a8a3 [formerly e15a1b02da6089ba27c9f7274cec2b7d8222b0a4] [formerly 437698c1697c8bf297c55c59256059b0b2a9c44f [formerly 800cb276e3eea547e22fb3a006c12437c4cad441]] [formerly d999aa719222bdce8c157c15634055d416dcee30 [formerly 8ef23f4060afb2b679915521a11b740b80669380] [formerly b4ae742b676c23938d8e26703b5eed7c3dea7cd9 [formerly 5a73e6b10076bccd181e362a61d0b64645e3f8e5]]]] [formerly 40cb29bd16692769ffc4cd9e10de4581483ef318 [formerly fa4437b35cc6d05b002cd040823f22c4699400b2] [formerly 5805704b0cc123658ef9bcfb9714e2eb3e1cfd23 [formerly 25f7212c8ff2c8c89ed35d09956756da39202ca4]] [formerly f5f2bef94f6bd9239fdc07ca9e8274cf172cd85b [formerly ab6675ff008d2a772f205d2c498155402743e012] [formerly 3138e6ce1da7d138fe1db3e9e8f58f2c4c0e888e [formerly 1ca84903a4fbaa39f43e93a207d6862aedc7c0be]]] [formerly 4c9f3cf1d8ddd6d93c860fc940360e3c89302de4 [formerly 88b5a0773183452d76f460639ef7e5f7d1d0e376] [formerly 3dbc2ec7b4d938cc500a1a4e5ebce33810093b6b [formerly 299f3764950a2856c4e10cf977c8c9efca71229f]] [formerly bf0de2fed6ed85d3e95404a7526989a232df946b [formerly 9d34078213c8e89207083bde2ff852528d2659ed] [formerly 1246727e78805553fefe228bd49050757add9236 [formerly efa9f835b3edb9e4f2d59e911c69a85500eeb602]]]]] [formerly e371d3b5f56feeed3071bfc81e08866cdfe4b116 [formerly 03670cae954223b280679835e0afa194ae237402] [formerly 3100fee57dcc4495c271609d8e9fb16eca86eb8a [formerly 628219288a433090a66a193be26b22f349e424ec]] [formerly cd4b4fc0cbe1be50090183e9a5682d7c35544de9 [formerly aaf4d9ae4ef7dd57132df973f93d1f13358d8164] [formerly 35fa33e69682b523604c21635ae84d83ce5bbf0a [formerly 94582b19a9dd4bf55d8c177766ec6f3669966fee]]] [formerly 08f30cef34bc236e0f0ce698ee8c3a891ab1230e [formerly 0317ee39f4c146ff07be7f6b53124ddfff494e45] [formerly dcb5e225a73f1cbfddd45f8b9422f54873b17ed5 [formerly c9d556cdcca52fe24104359c2b7be1dcc83ee1ac]] [formerly 4c66fa2f446d4e572733a2a3eeadafb319109cc3 [formerly f00839c917f0d915c42f974da4dc463aacf312bc] [formerly 173d6553fe59ec142ca2f5fce881031e1030da4c [formerly aa878ba32b6f5c8db4a0cf20a9e626f5e32a28bd]]]] [formerly 34ad5da184ef43dfc8af992be31584c67c0e9839 [formerly c16238ad0f77dd4dc08916bdeb8e82576007b454] [formerly 016565859c427fc933968ad9f3e35b902cff0a0d [formerly 2e17bffa66c99840596111376bddc725c955cf5a]] [formerly ac5dd34fe07132ffc3d74246513c4f45ca9738e9 [formerly f35341ea9efd5e7d58c846494273a9368f20def7] [formerly 63605c0cd23a1ee0aa075ae19e72fdd5304b75a9 [formerly 30768a97b44160b310a231e55826f2dbf3ef0e84]]] [formerly 87ed31196420fa3ecc8d446427bd7bdd68384852 [formerly 0784466b8ea55204c559d6f22bb4785fff7e5b17] [formerly 7ef627c9741e48e98356e900cfec2e3553ac54d2 [formerly 4cc3f1229be511f95a191997103ffe5fb893cb96]] [formerly 89ad58f769a11614d190e82dc2842933550e0418 [formerly c24354e066f8e3622cc2c342952ec0cf45721ca2] [formerly 45e6e005e4413e523866eb8f2120121b904b084e [formerly c2b44af7be9511bc0e58f2dac650119f45601bd5]]]]]] Former-commit-id: 6382bb839cdd13483afa79f710718245f2b1f763 [formerly cbb1e65926dd59b2837b0e55caca4c1e498cdb03] [formerly b55ea3224bc6603200e57810de9e6abbca770640 [formerly 1f9edfbd8ea3490aa9f8fdd339f25272bf8375a7]] [formerly a578391dab85ea7648a960f5b581936727ccc0f5 [formerly 3f2d87978974e7a9a02ecfcd65e5b2040e44646d] [formerly ec8a57ce8f1cc6a822fadbfc24b0f96ba5eb81a6 [formerly ed56ff08dc9915017da1c5d9a9afa016a2d7fe66]]] [formerly 9bb025aa9054fd128e65db68edaa520d5fd988dd [formerly cc195f7b2a2727046ab09675df4876acd18a1d3f] [formerly f6a6743bc977bf1568e97ac092bf7dd1b533374e [formerly e6ed426d6bb98f72c6960bf656847db6280fe7d6]] [formerly 285ad0b77016339f7ccac36fb421504e040dba78 [formerly 3ce7edbc41ea685524ac3c5fdb576bd9a12bab33] [formerly 1665a8d08081afbca89028ede265767481d5c176 [formerly c990c3aa5ad4874b9c23ec004b770ed2c7d6fd8c]]]] [formerly 20deda7f5730fc9d25ff7ec415beed548536a7b1 [formerly b8ec00710a39a3484d50ab2ad587e8d0884f66de] [formerly c7478488a6a32b1a6d2048df96b358efd9e437d5 [formerly 0e20ae05a2c662dbd8c1cd4a707f2579aa6023b1]] [formerly f8c3b5a8f29e7a0b3d09e97997feb37f08e3fd31 [formerly a92fd944b86c498dc6b53818e92d0fd8d3be486c] [formerly ce86051611249688b454d78716c3c959d94b519a [formerly 2b162b34d1a36a727cf41b67e833400a7f0bd6a1]]] [formerly 53a8738060670e980120286a8b65d0b6ed7f4c35 [formerly 9fbd3fbed1213e0e4c37be95c21621aa460c7766] [formerly de32295f7c0f9cb6c7bc150f2eb9607cca270134 [formerly b72c88221809fc82ee1a9618e9b67bf29c21ec11]] [formerly 5d0ba3380a9244eedb88732c7c8f7d46ed1b1d98 [formerly 8619d8109d04b74983686a9f4d21f223ca4472a9] [formerly 45e6e005e4413e523866eb8f2120121b904b084e]]]] Former-commit-id: b437ddaf205306478328eb3ec10f3cc7fa0b1644 [formerly a862b83e29ffc88aa14e847447786a5381b56feb] [formerly 2e5ecc53a8190861f3b877df187abdc78a976dee [formerly 084ee9bf757d6bf21d87b92e5ecccb1b970391db]] [formerly ac0b50ab7dc974c67267e9bbc7d3a616fb5550a5 [formerly 9e965e26e00be38e29d082d5df4de85c7baa065c] [formerly 0455e27faaf164d3ba09bee915d4923b1784d391 [formerly 96bb665c58ee243545db3725c347a89cb2c6af1f]]] [formerly bfa26e9b0c3e524e7230740e0964e66f0badb050 [formerly a37c9a732eb84d62142b014a54ad05bfb8129ca0] [formerly e41d8ec8f64988fb000609a6202e2ce79d51c174 [formerly c2501feab879ab4aa0a2708bce187ae6095e8b65]] [formerly 5464f49cd50f4815f51b2ddd7aa292b1981a0e2d [formerly bb92ff4b9f0b189253039ca2a0ce07175f13a8cd] [formerly 3ba646f1460ff496c1cef8e3fa47c2dffe3d6c0c [formerly 425993cd185b7b27e2e2e690ef329b925cd59e99]]]] Former-commit-id: 99a7cb6d6fb7f6a4960065e4e6138ef1f8b2298a [formerly 70230e04a8e14193bc83ebc6075b15c477a82602] [formerly 4c6a1e4309cd063b67f43b055900ae47207fbc08 [formerly 2689b8c34a21f723390b1681feced8176ff89fcf]] [formerly 6bbe3e740739d092d3de16c4b4bedaf40bb76682 [formerly 3c460c27d5a880ce39cd57ee76343ff798fb333b] [formerly 53cf0c8ae54e49c0c57ce82eb496fdf82a204eb2 [formerly 208c049ddd5ea7451c069378404f5a14ee79aef9]]] Former-commit-id: df6bd5ba7dc8ffcf7740d047fc82a6094c92cd0d [formerly be1022002b3f0ff19337026161dfbf8aff42aa31] [formerly 933790f0c5c051e2d0b5a1a399f913d28db621f0 [formerly dce7ea1261051a63539d04882cb56325bdedeffe]] Former-commit-id: db7210c37ccdad1785215ac2a4fe06d85736e54c [formerly 849759f3fc9544356f183c1f8fd6112a1a70fedc] Former-commit-id: 2d96f01d17227f6fb48525fec2041f12a0779392
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748
  1. import sys
  2. import argparse
  3. import os
  4. import pandas as pd
  5. from tods import generate_dataset, load_pipeline, evaluate_pipeline
  6. this_path = os.path.dirname(os.path.abspath(__file__))
  7. #table_path = 'datasets/NAB/realTweets/labeled_Twitter_volume_IBM.csv' # The path of the dataset
  8. parser = argparse.ArgumentParser(description='Arguments for running predefined pipelin.')
  9. #parser.add_argument('--table_path', type=str, default=os.path.join(this_path, '../datasets/yahoo_sub_5.csv'),
  10. # help='Input the path of the input data table')
  11. parser.add_argument('--table_path', type=str, default=os.path.join(this_path, '../datasets/anomaly/yahoo_system_sub_5/yahoo_system_sub_5_dataset/tables/learningData.csv'),
  12. help='Input the path of the input data table')
  13. parser.add_argument('--target_index', type=int, default=4,
  14. help='Index of the ground truth (for evaluation)')
  15. parser.add_argument('--metric',type=str, default='F1_MACRO',
  16. help='Evaluation Metric (F1, F1_MACRO)')
  17. #parser.add_argument('--pipeline_path', default=os.path.join(this_path, '../tods/resources/default_pipeline.json'),
  18. # help='Input the path of the pre-built pipeline description')
  19. #Using the pipeline that was build and saved in example_pipeline
  20. parser.add_argument('--pipeline_path', default=os.path.join(this_path, './example_pipeline.json'),
  21. help='Input the path of the pre-built pipeline description')
  22. args = parser.parse_args()
  23. table_path = args.table_path
  24. target_index = args.target_index # what column is the target
  25. pipeline_path = args.pipeline_path
  26. metric = args.metric # F1 on both label 0 and 1
  27. # Read data and generate dataset
  28. df = pd.read_csv(table_path)
  29. dataset = generate_dataset(df, target_index)
  30. # Load the default pipeline
  31. pipeline = load_pipeline(pipeline_path)
  32. # Run the pipeline
  33. pipeline_result = evaluate_pipeline(dataset, pipeline, metric)
  34. print(pipeline_result)

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算