You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.csv 2.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201
  1. d3mIndex,system,label
  2. 0,0.csv,1
  3. 1,1.csv,1
  4. 2,2.csv,1
  5. 3,3.csv,1
  6. 4,4.csv,1
  7. 5,5.csv,1
  8. 6,6.csv,1
  9. 7,7.csv,1
  10. 8,8.csv,1
  11. 9,9.csv,1
  12. 10,10.csv,1
  13. 11,11.csv,1
  14. 12,12.csv,1
  15. 13,13.csv,1
  16. 14,14.csv,1
  17. 15,15.csv,1
  18. 16,16.csv,1
  19. 17,17.csv,1
  20. 18,18.csv,1
  21. 19,19.csv,1
  22. 20,20.csv,1
  23. 21,21.csv,1
  24. 22,22.csv,1
  25. 23,23.csv,1
  26. 24,24.csv,1
  27. 25,25.csv,1
  28. 26,26.csv,1
  29. 27,27.csv,1
  30. 28,28.csv,1
  31. 29,29.csv,1
  32. 30,30.csv,1
  33. 31,31.csv,1
  34. 32,32.csv,1
  35. 33,33.csv,1
  36. 34,34.csv,0
  37. 35,35.csv,0
  38. 36,36.csv,0
  39. 37,37.csv,0
  40. 38,38.csv,0
  41. 39,39.csv,0
  42. 40,40.csv,0
  43. 41,41.csv,0
  44. 42,42.csv,0
  45. 43,43.csv,0
  46. 44,44.csv,0
  47. 45,45.csv,0
  48. 46,46.csv,0
  49. 47,47.csv,0
  50. 48,48.csv,0
  51. 49,49.csv,0
  52. 50,50.csv,0
  53. 51,51.csv,0
  54. 52,52.csv,0
  55. 53,53.csv,0
  56. 54,54.csv,0
  57. 55,55.csv,0
  58. 56,56.csv,0
  59. 57,57.csv,0
  60. 58,58.csv,0
  61. 59,59.csv,0
  62. 60,60.csv,0
  63. 61,61.csv,0
  64. 62,62.csv,0
  65. 63,63.csv,0
  66. 64,64.csv,0
  67. 65,65.csv,0
  68. 66,66.csv,0
  69. 67,67.csv,0
  70. 68,68.csv,0
  71. 69,69.csv,0
  72. 70,70.csv,0
  73. 71,71.csv,0
  74. 72,72.csv,0
  75. 73,73.csv,0
  76. 74,74.csv,0
  77. 75,75.csv,0
  78. 76,76.csv,0
  79. 77,77.csv,0
  80. 78,78.csv,0
  81. 79,79.csv,0
  82. 80,80.csv,0
  83. 81,81.csv,0
  84. 82,82.csv,0
  85. 83,83.csv,0
  86. 84,84.csv,0
  87. 85,85.csv,0
  88. 86,86.csv,0
  89. 87,87.csv,0
  90. 88,88.csv,0
  91. 89,89.csv,0
  92. 90,90.csv,0
  93. 91,91.csv,0
  94. 92,92.csv,0
  95. 93,93.csv,0
  96. 94,94.csv,0
  97. 95,95.csv,0
  98. 96,96.csv,0
  99. 97,97.csv,0
  100. 98,98.csv,0
  101. 99,99.csv,0
  102. 100,100.csv,1
  103. 101,101.csv,1
  104. 102,102.csv,1
  105. 103,103.csv,1
  106. 104,104.csv,1
  107. 105,105.csv,1
  108. 106,106.csv,1
  109. 107,107.csv,1
  110. 108,108.csv,1
  111. 109,109.csv,1
  112. 110,110.csv,1
  113. 111,111.csv,1
  114. 112,112.csv,1
  115. 113,113.csv,1
  116. 114,114.csv,1
  117. 115,115.csv,1
  118. 116,116.csv,1
  119. 117,117.csv,1
  120. 118,118.csv,1
  121. 119,119.csv,1
  122. 120,120.csv,1
  123. 121,121.csv,1
  124. 122,122.csv,1
  125. 123,123.csv,1
  126. 124,124.csv,1
  127. 125,125.csv,1
  128. 126,126.csv,1
  129. 127,127.csv,1
  130. 128,128.csv,1
  131. 129,129.csv,1
  132. 130,130.csv,1
  133. 131,131.csv,1
  134. 132,132.csv,1
  135. 133,133.csv,0
  136. 134,134.csv,0
  137. 135,135.csv,0
  138. 136,136.csv,0
  139. 137,137.csv,0
  140. 138,138.csv,0
  141. 139,139.csv,0
  142. 140,140.csv,0
  143. 141,141.csv,0
  144. 142,142.csv,0
  145. 143,143.csv,0
  146. 144,144.csv,0
  147. 145,145.csv,0
  148. 146,146.csv,0
  149. 147,147.csv,0
  150. 148,148.csv,0
  151. 149,149.csv,0
  152. 150,150.csv,0
  153. 151,151.csv,0
  154. 152,152.csv,0
  155. 153,153.csv,0
  156. 154,154.csv,0
  157. 155,155.csv,0
  158. 156,156.csv,0
  159. 157,157.csv,0
  160. 158,158.csv,0
  161. 159,159.csv,0
  162. 160,160.csv,0
  163. 161,161.csv,0
  164. 162,162.csv,0
  165. 163,163.csv,0
  166. 164,164.csv,0
  167. 165,165.csv,0
  168. 166,166.csv,0
  169. 167,167.csv,0
  170. 168,168.csv,0
  171. 169,169.csv,0
  172. 170,170.csv,0
  173. 171,171.csv,0
  174. 172,172.csv,0
  175. 173,173.csv,0
  176. 174,174.csv,0
  177. 175,175.csv,0
  178. 176,176.csv,0
  179. 177,177.csv,0
  180. 178,178.csv,0
  181. 179,179.csv,0
  182. 180,180.csv,0
  183. 181,181.csv,0
  184. 182,182.csv,0
  185. 183,183.csv,0
  186. 184,184.csv,0
  187. 185,185.csv,0
  188. 186,186.csv,0
  189. 187,187.csv,0
  190. 188,188.csv,0
  191. 189,189.csv,0
  192. 190,190.csv,0
  193. 191,191.csv,0
  194. 192,192.csv,0
  195. 193,193.csv,0
  196. 194,194.csv,0
  197. 195,195.csv,0
  198. 196,196.csv,0
  199. 197,197.csv,0
  200. 198,198.csv,0
  201. 199,199.csv,0

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算