You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

0.csv 3.3 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465
  1. 1.620000000000000000e+02,-3.800000000000000000e+01
  2. 2.890000000000000000e+02,-1.340000000000000000e+02
  3. 3.280000000000000000e+02,-1.200000000000000000e+01
  4. 3.080000000000000000e+02,8.400000000000000000e+01
  5. 1.800000000000000000e+02,3.000000000000000000e+01
  6. 5.200000000000000000e+01,1.040000000000000000e+02
  7. -3.000000000000000000e+01,1.640000000000000000e+02
  8. -1.200000000000000000e+01,2.200000000000000000e+02
  9. -4.400000000000000000e+01,2.860000000000000000e+02
  10. -1.400000000000000000e+01,2.400000000000000000e+02
  11. -4.200000000000000000e+01,1.160000000000000000e+02
  12. -3.400000000000000000e+01,-1.200000000000000000e+01
  13. -1.300000000000000000e+02,-2.600000000000000000e+01
  14. -1.200000000000000000e+02,-1.800000000000000000e+01
  15. -1.200000000000000000e+02,-3.600000000000000000e+01
  16. -1.440000000000000000e+02,-3.400000000000000000e+01
  17. -1.720000000000000000e+02,-3.600000000000000000e+01
  18. -1.440000000000000000e+02,-4.600000000000000000e+01
  19. -1.600000000000000000e+02,-5.000000000000000000e+01
  20. -2.000000000000000000e+02,-6.800000000000000000e+01
  21. -2.380000000000000000e+02,-6.400000000000000000e+01
  22. -2.380000000000000000e+02,-8.000000000000000000e+01
  23. -2.600000000000000000e+02,-8.800000000000000000e+01
  24. -2.840000000000000000e+02,-9.600000000000000000e+01
  25. -2.800000000000000000e+02,-1.040000000000000000e+02
  26. -2.900000000000000000e+02,-1.160000000000000000e+02
  27. -2.900000000000000000e+02,-1.260000000000000000e+02
  28. -2.600000000000000000e+02,-1.340000000000000000e+02
  29. -2.620000000000000000e+02,-1.480000000000000000e+02
  30. -2.360000000000000000e+02,-1.460000000000000000e+02
  31. -1.840000000000000000e+02,-1.320000000000000000e+02
  32. -1.540000000000000000e+02,-1.260000000000000000e+02
  33. -1.260000000000000000e+02,-1.180000000000000000e+02
  34. -9.800000000000000000e+01,-7.800000000000000000e+01
  35. -4.400000000000000000e+01,-7.400000000000000000e+01
  36. -5.400000000000000000e+01,-6.600000000000000000e+01
  37. -6.000000000000000000e+00,-4.800000000000000000e+01
  38. -1.200000000000000000e+01,-4.400000000000000000e+01
  39. -8.000000000000000000e+00,-3.200000000000000000e+01
  40. 1.200000000000000000e+01,-2.200000000000000000e+01
  41. 8.000000000000000000e+00,-1.600000000000000000e+01
  42. 2.600000000000000000e+01,-1.200000000000000000e+01
  43. 4.200000000000000000e+01,0.000000000000000000e+00
  44. 4.000000000000000000e+00,-6.000000000000000000e+00
  45. 4.200000000000000000e+01,-2.000000000000000000e+00
  46. 5.000000000000000000e+01,0.000000000000000000e+00
  47. 2.400000000000000000e+01,8.000000000000000000e+00
  48. 6.000000000000000000e+01,-2.000000000000000000e+00
  49. 4.800000000000000000e+01,4.000000000000000000e+00
  50. 5.600000000000000000e+01,8.000000000000000000e+00
  51. 6.400000000000000000e+01,1.400000000000000000e+01
  52. 7.800000000000000000e+01,2.000000000000000000e+00
  53. 6.400000000000000000e+01,1.800000000000000000e+01
  54. 5.400000000000000000e+01,1.200000000000000000e+01
  55. 3.600000000000000000e+01,2.800000000000000000e+01
  56. 7.400000000000000000e+01,-2.000000000000000000e+00
  57. 3.600000000000000000e+01,-2.800000000000000000e+01
  58. 3.400000000000000000e+01,-1.800000000000000000e+01
  59. 2.800000000000000000e+01,-2.200000000000000000e+01
  60. 8.000000000000000000e+00,-1.400000000000000000e+01
  61. 3.200000000000000000e+01,-2.600000000000000000e+01
  62. 1.400000000000000000e+01,-1.400000000000000000e+01
  63. 2.400000000000000000e+01,2.000000000000000000e+00
  64. 4.600000000000000000e+01,8.000000000000000000e+00
  65. 4.800000000000000000e+01,-4.000000000000000000e+00

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算