You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

12.csv 3.4 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566
  1. 5.800000000000000000e+01,2.200000000000000000e+01
  2. 8.600000000000000000e+01,-8.000000000000000000e+00
  3. 1.480000000000000000e+02,-3.600000000000000000e+01
  4. 2.750000000000000000e+02,-1.120000000000000000e+02
  5. 3.380000000000000000e+02,-4.000000000000000000e+00
  6. 2.780000000000000000e+02,5.400000000000000000e+01
  7. 1.500000000000000000e+02,3.200000000000000000e+01
  8. 2.200000000000000000e+01,9.800000000000000000e+01
  9. -3.400000000000000000e+01,1.780000000000000000e+02
  10. -1.200000000000000000e+01,2.260000000000000000e+02
  11. -8.200000000000000000e+01,3.040000000000000000e+02
  12. -4.600000000000000000e+01,2.520000000000000000e+02
  13. -7.400000000000000000e+01,1.240000000000000000e+02
  14. -3.800000000000000000e+01,-4.000000000000000000e+00
  15. -1.460000000000000000e+02,-3.000000000000000000e+01
  16. -1.360000000000000000e+02,-2.200000000000000000e+01
  17. -1.600000000000000000e+02,-3.400000000000000000e+01
  18. -1.540000000000000000e+02,-3.000000000000000000e+01
  19. -1.940000000000000000e+02,-3.800000000000000000e+01
  20. -1.980000000000000000e+02,-4.200000000000000000e+01
  21. -2.380000000000000000e+02,-4.800000000000000000e+01
  22. -2.680000000000000000e+02,-5.000000000000000000e+01
  23. -2.420000000000000000e+02,-5.000000000000000000e+01
  24. -2.780000000000000000e+02,-5.400000000000000000e+01
  25. -2.900000000000000000e+02,-6.200000000000000000e+01
  26. -3.200000000000000000e+02,-8.000000000000000000e+01
  27. -3.440000000000000000e+02,-8.600000000000000000e+01
  28. -3.280000000000000000e+02,-1.100000000000000000e+02
  29. -3.280000000000000000e+02,-1.120000000000000000e+02
  30. -3.240000000000000000e+02,-1.160000000000000000e+02
  31. -2.880000000000000000e+02,-1.180000000000000000e+02
  32. -2.380000000000000000e+02,-1.280000000000000000e+02
  33. -1.900000000000000000e+02,-1.140000000000000000e+02
  34. -1.380000000000000000e+02,-1.140000000000000000e+02
  35. -9.600000000000000000e+01,-1.040000000000000000e+02
  36. -3.200000000000000000e+01,-8.200000000000000000e+01
  37. 1.000000000000000000e+01,-6.600000000000000000e+01
  38. 2.000000000000000000e+01,-6.200000000000000000e+01
  39. 3.800000000000000000e+01,-5.000000000000000000e+01
  40. 5.600000000000000000e+01,-3.200000000000000000e+01
  41. 6.000000000000000000e+01,-2.800000000000000000e+01
  42. 5.200000000000000000e+01,-6.000000000000000000e+00
  43. 7.000000000000000000e+01,-1.000000000000000000e+01
  44. 5.600000000000000000e+01,1.000000000000000000e+01
  45. 6.400000000000000000e+01,2.600000000000000000e+01
  46. 6.800000000000000000e+01,3.400000000000000000e+01
  47. 5.400000000000000000e+01,3.200000000000000000e+01
  48. 6.600000000000000000e+01,4.200000000000000000e+01
  49. 5.800000000000000000e+01,4.000000000000000000e+01
  50. 4.000000000000000000e+01,3.000000000000000000e+01
  51. 5.200000000000000000e+01,3.200000000000000000e+01
  52. 5.200000000000000000e+01,3.600000000000000000e+01
  53. 5.800000000000000000e+01,2.600000000000000000e+01
  54. 1.400000000000000000e+01,4.000000000000000000e+01
  55. 9.000000000000000000e+01,3.000000000000000000e+01
  56. 5.800000000000000000e+01,2.400000000000000000e+01
  57. 4.800000000000000000e+01,2.800000000000000000e+01
  58. 6.800000000000000000e+01,2.400000000000000000e+01
  59. 7.000000000000000000e+01,2.600000000000000000e+01
  60. 4.600000000000000000e+01,3.000000000000000000e+01
  61. 9.800000000000000000e+01,2.000000000000000000e+01
  62. 1.100000000000000000e+02,1.600000000000000000e+01
  63. 2.000000000000000000e+01,-8.000000000000000000e+00
  64. -1.080000000000000000e+02,-5.400000000000000000e+01
  65. -2.360000000000000000e+02,-1.820000000000000000e+02
  66. -3.640000000000000000e+02,-3.100000000000000000e+02

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算