You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

162.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. 2.800000000000000000e+01,2.000000000000000000e+01
  2. 4.600000000000000000e+01,-3.000000000000000000e+01
  3. 1.580000000000000000e+02,-1.580000000000000000e+02
  4. 2.800000000000000000e+02,-1.880000000000000000e+02
  5. 1.520000000000000000e+02,-6.100000000000000000e+01
  6. 7.400000000000000000e+01,4.200000000000000000e+01
  7. -5.400000000000000000e+01,1.320000000000000000e+02
  8. 2.600000000000000000e+01,1.840000000000000000e+02
  9. 5.600000000000000000e+01,2.580000000000000000e+02
  10. 3.800000000000000000e+01,3.540000000000000000e+02
  11. 5.400000000000000000e+01,3.440000000000000000e+02
  12. 4.200000000000000000e+01,2.160000000000000000e+02
  13. -1.000000000000000000e+01,8.800000000000000000e+01
  14. -7.000000000000000000e+01,1.800000000000000000e+01
  15. -7.400000000000000000e+01,-1.200000000000000000e+01
  16. -8.400000000000000000e+01,1.000000000000000000e+01
  17. -9.000000000000000000e+01,-1.000000000000000000e+01
  18. -9.200000000000000000e+01,-1.400000000000000000e+01
  19. -1.040000000000000000e+02,-6.000000000000000000e+00
  20. -1.180000000000000000e+02,-8.000000000000000000e+00
  21. -9.400000000000000000e+01,-1.800000000000000000e+01
  22. -1.240000000000000000e+02,-8.000000000000000000e+00
  23. -1.200000000000000000e+02,-2.000000000000000000e+01
  24. -1.220000000000000000e+02,-1.800000000000000000e+01
  25. -1.380000000000000000e+02,-1.800000000000000000e+01
  26. -1.340000000000000000e+02,-2.800000000000000000e+01
  27. -1.300000000000000000e+02,-3.600000000000000000e+01
  28. -1.620000000000000000e+02,-1.400000000000000000e+01
  29. -1.520000000000000000e+02,-5.400000000000000000e+01
  30. -1.620000000000000000e+02,-4.600000000000000000e+01
  31. -1.640000000000000000e+02,-4.400000000000000000e+01
  32. -1.740000000000000000e+02,-5.400000000000000000e+01
  33. -1.780000000000000000e+02,-5.400000000000000000e+01
  34. -1.660000000000000000e+02,-7.800000000000000000e+01
  35. -1.780000000000000000e+02,-7.200000000000000000e+01
  36. -1.560000000000000000e+02,-7.600000000000000000e+01
  37. -1.540000000000000000e+02,-8.400000000000000000e+01
  38. -1.160000000000000000e+02,-7.000000000000000000e+01
  39. -1.020000000000000000e+02,-8.200000000000000000e+01
  40. -6.800000000000000000e+01,-7.200000000000000000e+01
  41. -3.800000000000000000e+01,-7.000000000000000000e+01
  42. -1.600000000000000000e+01,-5.800000000000000000e+01
  43. 2.200000000000000000e+01,-3.800000000000000000e+01
  44. 3.600000000000000000e+01,-4.600000000000000000e+01
  45. 5.000000000000000000e+01,-2.200000000000000000e+01
  46. 6.400000000000000000e+01,-2.000000000000000000e+00
  47. 5.600000000000000000e+01,-1.400000000000000000e+01
  48. 7.600000000000000000e+01,1.200000000000000000e+01
  49. 6.400000000000000000e+01,1.000000000000000000e+01
  50. 5.000000000000000000e+01,1.200000000000000000e+01
  51. 4.600000000000000000e+01,1.800000000000000000e+01
  52. 3.800000000000000000e+01,1.200000000000000000e+01
  53. 4.200000000000000000e+01,1.800000000000000000e+01
  54. 2.400000000000000000e+01,2.400000000000000000e+01
  55. 2.600000000000000000e+01,1.600000000000000000e+01
  56. 3.200000000000000000e+01,2.600000000000000000e+01
  57. 2.800000000000000000e+01,1.600000000000000000e+01
  58. 2.400000000000000000e+01,3.400000000000000000e+01
  59. 3.600000000000000000e+01,1.600000000000000000e+01
  60. 2.200000000000000000e+01,2.000000000000000000e+01
  61. 1.600000000000000000e+01,1.600000000000000000e+01
  62. 2.000000000000000000e+01,3.600000000000000000e+01
  63. 1.400000000000000000e+01,0.000000000000000000e+00
  64. 2.400000000000000000e+01,1.600000000000000000e+01
  65. 1.200000000000000000e+01,1.800000000000000000e+01
  66. 8.000000000000000000e+00,8.000000000000000000e+00
  67. 1.800000000000000000e+01,1.200000000000000000e+01
  68. 1.000000000000000000e+01,2.000000000000000000e+01
  69. 4.000000000000000000e+00,6.000000000000000000e+00
  70. 6.000000000000000000e+00,1.400000000000000000e+01
  71. -4.000000000000000000e+00,8.000000000000000000e+00
  72. 8.000000000000000000e+00,6.000000000000000000e+00
  73. -6.000000000000000000e+00,1.800000000000000000e+01
  74. -6.000000000000000000e+00,1.600000000000000000e+01
  75. -1.000000000000000000e+01,0.000000000000000000e+00
  76. 1.400000000000000000e+01,1.800000000000000000e+01
  77. 1.800000000000000000e+01,2.400000000000000000e+01
  78. 3.000000000000000000e+01,2.800000000000000000e+01
  79. 3.800000000000000000e+01,4.200000000000000000e+01
  80. 4.400000000000000000e+01,3.400000000000000000e+01
  81. 2.800000000000000000e+01,2.400000000000000000e+01
  82. 8.000000000000000000e+00,2.000000000000000000e+00
  83. 1.400000000000000000e+01,4.000000000000000000e+00
  84. -1.200000000000000000e+01,-4.000000000000000000e+00
  85. -1.400000000000000000e+01,8.000000000000000000e+00
  86. -3.600000000000000000e+01,-2.000000000000000000e+00
  87. -8.000000000000000000e+00,-2.200000000000000000e+01
  88. -3.000000000000000000e+01,1.200000000000000000e+01
  89. -3.800000000000000000e+01,6.000000000000000000e+00
  90. -2.400000000000000000e+01,2.000000000000000000e+00
  91. -3.000000000000000000e+01,1.800000000000000000e+01
  92. -2.400000000000000000e+01,8.000000000000000000e+00
  93. -4.200000000000000000e+01,1.000000000000000000e+01
  94. -4.000000000000000000e+01,1.600000000000000000e+01
  95. -2.400000000000000000e+01,6.000000000000000000e+00
  96. -2.800000000000000000e+01,2.000000000000000000e+00
  97. -3.800000000000000000e+01,1.400000000000000000e+01
  98. -4.600000000000000000e+01,7.200000000000000000e+01
  99. -5.400000000000000000e+01,2.000000000000000000e+00
  100. 1.400000000000000000e+01,6.400000000000000000e+01
  101. 2.400000000000000000e+01,-1.400000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算