You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

168.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. 7.800000000000000000e+01,-1.800000000000000000e+01
  2. 2.000000000000000000e+02,-1.460000000000000000e+02
  3. 3.270000000000000000e+02,-2.380000000000000000e+02
  4. 2.220000000000000000e+02,-1.110000000000000000e+02
  5. 1.860000000000000000e+02,1.600000000000000000e+01
  6. 5.800000000000000000e+01,4.200000000000000000e+01
  7. -7.000000000000000000e+01,1.360000000000000000e+02
  8. 1.600000000000000000e+01,1.980000000000000000e+02
  9. 4.600000000000000000e+01,2.760000000000000000e+02
  10. -2.000000000000000000e+00,3.600000000000000000e+02
  11. -4.000000000000000000e+00,2.900000000000000000e+02
  12. 1.000000000000000000e+01,1.620000000000000000e+02
  13. -2.000000000000000000e+00,3.400000000000000000e+01
  14. -3.200000000000000000e+01,-1.800000000000000000e+01
  15. -3.400000000000000000e+01,-2.800000000000000000e+01
  16. -3.400000000000000000e+01,-2.600000000000000000e+01
  17. -5.000000000000000000e+01,-3.200000000000000000e+01
  18. -5.400000000000000000e+01,-4.000000000000000000e+01
  19. -7.400000000000000000e+01,-3.400000000000000000e+01
  20. -6.400000000000000000e+01,-3.200000000000000000e+01
  21. -6.600000000000000000e+01,-3.400000000000000000e+01
  22. -8.600000000000000000e+01,-3.200000000000000000e+01
  23. -9.000000000000000000e+01,-3.400000000000000000e+01
  24. -8.000000000000000000e+01,-4.400000000000000000e+01
  25. -1.000000000000000000e+02,-4.400000000000000000e+01
  26. -1.120000000000000000e+02,-4.400000000000000000e+01
  27. -1.120000000000000000e+02,-5.600000000000000000e+01
  28. -1.260000000000000000e+02,-4.800000000000000000e+01
  29. -1.260000000000000000e+02,-6.800000000000000000e+01
  30. -1.340000000000000000e+02,-6.600000000000000000e+01
  31. -1.340000000000000000e+02,-7.200000000000000000e+01
  32. -1.460000000000000000e+02,-7.400000000000000000e+01
  33. -1.400000000000000000e+02,-9.200000000000000000e+01
  34. -1.380000000000000000e+02,-9.000000000000000000e+01
  35. -1.440000000000000000e+02,-1.000000000000000000e+02
  36. -9.800000000000000000e+01,-1.020000000000000000e+02
  37. -9.600000000000000000e+01,-1.100000000000000000e+02
  38. -7.000000000000000000e+01,-1.060000000000000000e+02
  39. -3.000000000000000000e+01,-9.800000000000000000e+01
  40. -2.000000000000000000e+01,-1.020000000000000000e+02
  41. 3.000000000000000000e+01,-7.600000000000000000e+01
  42. 3.200000000000000000e+01,-7.800000000000000000e+01
  43. 6.400000000000000000e+01,-6.600000000000000000e+01
  44. 6.800000000000000000e+01,-4.200000000000000000e+01
  45. 1.080000000000000000e+02,-3.800000000000000000e+01
  46. 8.200000000000000000e+01,-2.800000000000000000e+01
  47. 1.060000000000000000e+02,-1.400000000000000000e+01
  48. 8.000000000000000000e+01,-2.200000000000000000e+01
  49. 9.600000000000000000e+01,-2.000000000000000000e+01
  50. 9.400000000000000000e+01,1.000000000000000000e+01
  51. 7.800000000000000000e+01,4.000000000000000000e+00
  52. 6.600000000000000000e+01,2.000000000000000000e+00
  53. 7.800000000000000000e+01,2.000000000000000000e+01
  54. 7.200000000000000000e+01,6.000000000000000000e+00
  55. 7.600000000000000000e+01,6.000000000000000000e+00
  56. 6.400000000000000000e+01,8.000000000000000000e+00
  57. 7.200000000000000000e+01,-4.000000000000000000e+00
  58. 6.200000000000000000e+01,2.000000000000000000e+00
  59. 7.200000000000000000e+01,1.400000000000000000e+01
  60. 7.000000000000000000e+01,-1.000000000000000000e+01
  61. 7.000000000000000000e+01,2.200000000000000000e+01
  62. 9.200000000000000000e+01,6.000000000000000000e+00
  63. 3.400000000000000000e+01,-1.600000000000000000e+01
  64. 5.800000000000000000e+01,3.600000000000000000e+01
  65. 7.600000000000000000e+01,-1.800000000000000000e+01
  66. 5.400000000000000000e+01,-4.000000000000000000e+00
  67. 5.800000000000000000e+01,-6.000000000000000000e+00
  68. 4.000000000000000000e+01,0.000000000000000000e+00
  69. 6.600000000000000000e+01,0.000000000000000000e+00
  70. 1.000000000000000000e+01,2.000000000000000000e+00
  71. 6.400000000000000000e+01,0.000000000000000000e+00
  72. 4.200000000000000000e+01,-8.000000000000000000e+00
  73. 2.400000000000000000e+01,-2.000000000000000000e+00
  74. 2.800000000000000000e+01,-4.000000000000000000e+00
  75. 2.800000000000000000e+01,0.000000000000000000e+00
  76. 3.200000000000000000e+01,2.000000000000000000e+00
  77. 5.000000000000000000e+01,1.400000000000000000e+01
  78. 6.000000000000000000e+01,1.800000000000000000e+01
  79. 7.800000000000000000e+01,3.200000000000000000e+01
  80. 8.000000000000000000e+01,2.600000000000000000e+01
  81. 6.200000000000000000e+01,1.000000000000000000e+01
  82. 5.000000000000000000e+01,-4.000000000000000000e+00
  83. 3.600000000000000000e+01,-8.000000000000000000e+00
  84. 2.600000000000000000e+01,-2.000000000000000000e+01
  85. 2.600000000000000000e+01,-1.400000000000000000e+01
  86. 4.000000000000000000e+00,-2.200000000000000000e+01
  87. 1.600000000000000000e+01,-1.400000000000000000e+01
  88. 2.000000000000000000e+01,-2.000000000000000000e+01
  89. 1.200000000000000000e+01,-1.000000000000000000e+01
  90. 1.000000000000000000e+01,-1.200000000000000000e+01
  91. 2.000000000000000000e+00,-1.000000000000000000e+01
  92. 2.800000000000000000e+01,-2.000000000000000000e+00
  93. -1.000000000000000000e+01,-1.200000000000000000e+01
  94. 1.600000000000000000e+01,-8.000000000000000000e+00
  95. -1.000000000000000000e+01,-6.000000000000000000e+00
  96. 0.000000000000000000e+00,-1.600000000000000000e+01
  97. 3.800000000000000000e+01,4.000000000000000000e+00
  98. -1.600000000000000000e+01,-1.400000000000000000e+01
  99. -6.000000000000000000e+00,-8.000000000000000000e+00
  100. 1.600000000000000000e+01,4.000000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算