You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

153.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. 9.400000000000000000e+01,-3.400000000000000000e+01
  2. 2.120000000000000000e+02,-1.220000000000000000e+02
  3. 3.390000000000000000e+02,-1.380000000000000000e+02
  4. 2.760000000000000000e+02,-1.100000000000000000e+01
  5. 1.480000000000000000e+02,4.000000000000000000e+01
  6. 2.000000000000000000e+01,1.040000000000000000e+02
  7. 9.800000000000000000e+01,1.600000000000000000e+02
  8. 1.440000000000000000e+02,2.160000000000000000e+02
  9. 1.440000000000000000e+02,3.000000000000000000e+02
  10. 1.600000000000000000e+02,3.060000000000000000e+02
  11. 1.460000000000000000e+02,1.780000000000000000e+02
  12. 6.600000000000000000e+01,5.000000000000000000e+01
  13. -4.400000000000000000e+01,8.000000000000000000e+00
  14. -5.400000000000000000e+01,1.200000000000000000e+01
  15. -6.400000000000000000e+01,-8.000000000000000000e+00
  16. -8.000000000000000000e+01,4.000000000000000000e+00
  17. -7.800000000000000000e+01,-4.000000000000000000e+00
  18. -8.800000000000000000e+01,-8.000000000000000000e+00
  19. -9.600000000000000000e+01,-6.000000000000000000e+00
  20. -1.120000000000000000e+02,2.000000000000000000e+00
  21. -1.000000000000000000e+02,-1.000000000000000000e+01
  22. -1.040000000000000000e+02,-4.000000000000000000e+00
  23. -1.260000000000000000e+02,-1.000000000000000000e+01
  24. -1.360000000000000000e+02,-2.000000000000000000e+00
  25. -1.460000000000000000e+02,-2.000000000000000000e+01
  26. -1.360000000000000000e+02,-1.000000000000000000e+01
  27. -1.640000000000000000e+02,-1.400000000000000000e+01
  28. -1.640000000000000000e+02,-2.800000000000000000e+01
  29. -1.900000000000000000e+02,-3.000000000000000000e+01
  30. -2.060000000000000000e+02,-3.400000000000000000e+01
  31. -2.060000000000000000e+02,-3.000000000000000000e+01
  32. -2.160000000000000000e+02,-6.400000000000000000e+01
  33. -2.100000000000000000e+02,-6.200000000000000000e+01
  34. -2.000000000000000000e+02,-7.400000000000000000e+01
  35. -2.020000000000000000e+02,-6.600000000000000000e+01
  36. -1.940000000000000000e+02,-6.400000000000000000e+01
  37. -1.440000000000000000e+02,-8.200000000000000000e+01
  38. -1.160000000000000000e+02,-7.200000000000000000e+01
  39. -9.000000000000000000e+01,-7.000000000000000000e+01
  40. -4.400000000000000000e+01,-6.800000000000000000e+01
  41. -8.000000000000000000e+00,-6.200000000000000000e+01
  42. 2.000000000000000000e+01,-3.800000000000000000e+01
  43. 4.600000000000000000e+01,-4.600000000000000000e+01
  44. 5.800000000000000000e+01,-2.000000000000000000e+01
  45. 8.400000000000000000e+01,-1.600000000000000000e+01
  46. 9.000000000000000000e+01,-4.000000000000000000e+00
  47. 9.200000000000000000e+01,4.000000000000000000e+00
  48. 9.800000000000000000e+01,0.000000000000000000e+00
  49. 1.020000000000000000e+02,6.000000000000000000e+00
  50. 9.000000000000000000e+01,1.000000000000000000e+01
  51. 8.200000000000000000e+01,1.800000000000000000e+01
  52. 8.200000000000000000e+01,-4.000000000000000000e+00
  53. 9.200000000000000000e+01,1.000000000000000000e+01
  54. 8.000000000000000000e+01,2.400000000000000000e+01
  55. 8.400000000000000000e+01,1.600000000000000000e+01
  56. 8.400000000000000000e+01,2.200000000000000000e+01
  57. 8.600000000000000000e+01,2.000000000000000000e+01
  58. 8.000000000000000000e+01,4.000000000000000000e+00
  59. 7.200000000000000000e+01,1.800000000000000000e+01
  60. 8.600000000000000000e+01,4.400000000000000000e+01
  61. 7.400000000000000000e+01,6.000000000000000000e+00
  62. 8.200000000000000000e+01,2.000000000000000000e+00
  63. 7.000000000000000000e+01,2.000000000000000000e+01
  64. 7.000000000000000000e+01,2.400000000000000000e+01
  65. 7.600000000000000000e+01,1.000000000000000000e+01
  66. 6.000000000000000000e+01,1.600000000000000000e+01
  67. 6.400000000000000000e+01,1.000000000000000000e+01
  68. 4.800000000000000000e+01,1.800000000000000000e+01
  69. 6.400000000000000000e+01,2.400000000000000000e+01
  70. 5.800000000000000000e+01,1.400000000000000000e+01
  71. 5.400000000000000000e+01,1.200000000000000000e+01
  72. 6.000000000000000000e+01,2.000000000000000000e+01
  73. 6.600000000000000000e+01,2.000000000000000000e+01
  74. 4.800000000000000000e+01,1.200000000000000000e+01
  75. 6.800000000000000000e+01,2.600000000000000000e+01
  76. 5.800000000000000000e+01,2.000000000000000000e+01
  77. 6.600000000000000000e+01,2.200000000000000000e+01
  78. 8.400000000000000000e+01,3.400000000000000000e+01
  79. 1.020000000000000000e+02,3.800000000000000000e+01
  80. 1.100000000000000000e+02,3.800000000000000000e+01
  81. 8.200000000000000000e+01,3.200000000000000000e+01
  82. 7.400000000000000000e+01,1.800000000000000000e+01
  83. 6.600000000000000000e+01,4.000000000000000000e+00
  84. 3.400000000000000000e+01,-6.000000000000000000e+00
  85. 2.800000000000000000e+01,1.800000000000000000e+01
  86. 3.000000000000000000e+01,-4.000000000000000000e+00
  87. 2.800000000000000000e+01,0.000000000000000000e+00
  88. 3.000000000000000000e+01,-8.000000000000000000e+00
  89. 1.800000000000000000e+01,1.600000000000000000e+01
  90. 3.200000000000000000e+01,-6.000000000000000000e+00
  91. 2.000000000000000000e+01,2.400000000000000000e+01
  92. 2.200000000000000000e+01,2.000000000000000000e+00
  93. 2.000000000000000000e+00,1.000000000000000000e+01
  94. 3.600000000000000000e+01,1.400000000000000000e+01
  95. 2.000000000000000000e+01,1.400000000000000000e+01
  96. 8.000000000000000000e+00,2.000000000000000000e+01
  97. 1.000000000000000000e+01,8.000000000000000000e+00
  98. 1.200000000000000000e+01,1.000000000000000000e+01
  99. 3.400000000000000000e+01,1.600000000000000000e+01
  100. 2.400000000000000000e+01,3.000000000000000000e+01
  101. 6.200000000000000000e+01,1.200000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算