You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

160.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. -2.000000000000000000e+00,1.200000000000000000e+01
  2. 5.800000000000000000e+01,-5.000000000000000000e+01
  3. 1.640000000000000000e+02,-1.780000000000000000e+02
  4. 2.520000000000000000e+02,-1.520000000000000000e+02
  5. 1.360000000000000000e+02,-2.500000000000000000e+01
  6. 8.000000000000000000e+00,4.200000000000000000e+01
  7. -1.080000000000000000e+02,1.260000000000000000e+02
  8. 1.200000000000000000e+01,1.900000000000000000e+02
  9. 2.000000000000000000e+01,2.520000000000000000e+02
  10. -2.000000000000000000e+00,3.440000000000000000e+02
  11. 1.000000000000000000e+01,3.560000000000000000e+02
  12. -3.200000000000000000e+01,2.280000000000000000e+02
  13. -5.000000000000000000e+01,1.000000000000000000e+02
  14. -1.020000000000000000e+02,1.200000000000000000e+01
  15. -1.220000000000000000e+02,6.000000000000000000e+00
  16. -1.280000000000000000e+02,-2.000000000000000000e+00
  17. -1.300000000000000000e+02,-1.000000000000000000e+01
  18. -1.260000000000000000e+02,-1.200000000000000000e+01
  19. -1.420000000000000000e+02,-6.000000000000000000e+00
  20. -1.440000000000000000e+02,-6.000000000000000000e+00
  21. -1.400000000000000000e+02,-2.000000000000000000e+01
  22. -1.440000000000000000e+02,-1.600000000000000000e+01
  23. -1.660000000000000000e+02,-1.400000000000000000e+01
  24. -1.700000000000000000e+02,-1.600000000000000000e+01
  25. -1.740000000000000000e+02,-2.200000000000000000e+01
  26. -1.880000000000000000e+02,-2.400000000000000000e+01
  27. -2.020000000000000000e+02,-3.000000000000000000e+01
  28. -2.060000000000000000e+02,-2.600000000000000000e+01
  29. -2.140000000000000000e+02,-3.400000000000000000e+01
  30. -2.260000000000000000e+02,-4.400000000000000000e+01
  31. -2.280000000000000000e+02,-4.800000000000000000e+01
  32. -2.420000000000000000e+02,-4.400000000000000000e+01
  33. -2.360000000000000000e+02,-6.800000000000000000e+01
  34. -2.180000000000000000e+02,-6.800000000000000000e+01
  35. -2.220000000000000000e+02,-7.000000000000000000e+01
  36. -2.040000000000000000e+02,-7.600000000000000000e+01
  37. -1.780000000000000000e+02,-8.600000000000000000e+01
  38. -1.640000000000000000e+02,-7.600000000000000000e+01
  39. -1.340000000000000000e+02,-7.600000000000000000e+01
  40. -1.000000000000000000e+02,-8.800000000000000000e+01
  41. -6.400000000000000000e+01,-6.000000000000000000e+01
  42. -4.000000000000000000e+01,-5.400000000000000000e+01
  43. -1.400000000000000000e+01,-4.600000000000000000e+01
  44. 4.000000000000000000e+00,-1.600000000000000000e+01
  45. 2.600000000000000000e+01,-2.600000000000000000e+01
  46. 3.400000000000000000e+01,2.000000000000000000e+00
  47. 3.400000000000000000e+01,8.000000000000000000e+00
  48. 3.800000000000000000e+01,1.200000000000000000e+01
  49. 3.800000000000000000e+01,1.400000000000000000e+01
  50. 3.000000000000000000e+01,2.000000000000000000e+01
  51. 2.000000000000000000e+01,1.800000000000000000e+01
  52. 2.000000000000000000e+01,1.800000000000000000e+01
  53. 8.000000000000000000e+00,2.000000000000000000e+01
  54. 1.200000000000000000e+01,1.800000000000000000e+01
  55. 8.000000000000000000e+00,1.200000000000000000e+01
  56. -2.000000000000000000e+00,2.000000000000000000e+01
  57. -4.000000000000000000e+00,1.600000000000000000e+01
  58. 1.200000000000000000e+01,1.400000000000000000e+01
  59. -4.000000000000000000e+00,1.600000000000000000e+01
  60. -1.400000000000000000e+01,3.000000000000000000e+01
  61. -6.000000000000000000e+00,1.200000000000000000e+01
  62. 4.000000000000000000e+00,2.200000000000000000e+01
  63. -8.000000000000000000e+00,1.600000000000000000e+01
  64. -2.000000000000000000e+00,1.200000000000000000e+01
  65. -4.000000000000000000e+00,2.600000000000000000e+01
  66. -1.200000000000000000e+01,6.000000000000000000e+00
  67. -1.800000000000000000e+01,6.000000000000000000e+00
  68. -2.400000000000000000e+01,1.400000000000000000e+01
  69. -1.000000000000000000e+01,8.000000000000000000e+00
  70. -2.600000000000000000e+01,1.000000000000000000e+01
  71. -2.800000000000000000e+01,1.800000000000000000e+01
  72. -3.000000000000000000e+01,1.200000000000000000e+01
  73. -1.000000000000000000e+01,1.400000000000000000e+01
  74. -3.000000000000000000e+01,1.400000000000000000e+01
  75. -3.800000000000000000e+01,2.400000000000000000e+01
  76. -2.000000000000000000e+00,3.200000000000000000e+01
  77. 1.200000000000000000e+01,3.800000000000000000e+01
  78. 2.400000000000000000e+01,4.400000000000000000e+01
  79. 2.600000000000000000e+01,4.000000000000000000e+01
  80. 2.000000000000000000e+00,4.200000000000000000e+01
  81. -2.000000000000000000e+00,1.600000000000000000e+01
  82. -8.000000000000000000e+00,8.000000000000000000e+00
  83. -2.600000000000000000e+01,6.000000000000000000e+00
  84. -2.800000000000000000e+01,6.000000000000000000e+00
  85. -3.800000000000000000e+01,2.000000000000000000e+00
  86. -3.800000000000000000e+01,4.000000000000000000e+00
  87. -3.400000000000000000e+01,-1.000000000000000000e+01
  88. -5.600000000000000000e+01,1.200000000000000000e+01
  89. -3.200000000000000000e+01,1.200000000000000000e+01
  90. -4.800000000000000000e+01,1.000000000000000000e+01
  91. -4.800000000000000000e+01,1.800000000000000000e+01
  92. -4.600000000000000000e+01,6.000000000000000000e+00
  93. -4.200000000000000000e+01,1.600000000000000000e+01
  94. -4.600000000000000000e+01,4.000000000000000000e+00
  95. -4.400000000000000000e+01,1.200000000000000000e+01
  96. -5.200000000000000000e+01,1.200000000000000000e+01
  97. -4.200000000000000000e+01,1.000000000000000000e+01
  98. -3.600000000000000000e+01,2.400000000000000000e+01
  99. -3.800000000000000000e+01,4.200000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算