You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

161.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. 1.140000000000000000e+02,-1.800000000000000000e+01
  2. 1.960000000000000000e+02,-1.220000000000000000e+02
  3. 3.180000000000000000e+02,-2.320000000000000000e+02
  4. 3.060000000000000000e+02,-1.050000000000000000e+02
  5. 2.760000000000000000e+02,2.200000000000000000e+01
  6. 1.480000000000000000e+02,8.000000000000000000e+00
  7. 2.800000000000000000e+01,1.040000000000000000e+02
  8. 8.600000000000000000e+01,1.560000000000000000e+02
  9. 1.100000000000000000e+02,2.180000000000000000e+02
  10. 7.400000000000000000e+01,3.240000000000000000e+02
  11. 9.400000000000000000e+01,3.120000000000000000e+02
  12. 6.800000000000000000e+01,1.840000000000000000e+02
  13. 4.400000000000000000e+01,5.600000000000000000e+01
  14. -4.000000000000000000e+00,1.600000000000000000e+01
  15. -2.000000000000000000e+00,-6.000000000000000000e+00
  16. -2.000000000000000000e+01,2.000000000000000000e+00
  17. -2.800000000000000000e+01,-6.000000000000000000e+00
  18. -4.600000000000000000e+01,-1.000000000000000000e+01
  19. -2.600000000000000000e+01,-8.000000000000000000e+00
  20. -5.600000000000000000e+01,-6.000000000000000000e+00
  21. -5.600000000000000000e+01,2.000000000000000000e+00
  22. -6.200000000000000000e+01,-2.200000000000000000e+01
  23. -7.200000000000000000e+01,-6.000000000000000000e+00
  24. -7.000000000000000000e+01,-1.400000000000000000e+01
  25. -8.200000000000000000e+01,-1.400000000000000000e+01
  26. -1.000000000000000000e+02,-1.600000000000000000e+01
  27. -1.000000000000000000e+02,-1.800000000000000000e+01
  28. -1.040000000000000000e+02,-2.000000000000000000e+01
  29. -1.240000000000000000e+02,-3.400000000000000000e+01
  30. -1.180000000000000000e+02,-3.400000000000000000e+01
  31. -1.320000000000000000e+02,-4.400000000000000000e+01
  32. -1.240000000000000000e+02,-4.600000000000000000e+01
  33. -1.560000000000000000e+02,-5.600000000000000000e+01
  34. -1.340000000000000000e+02,-6.400000000000000000e+01
  35. -1.440000000000000000e+02,-6.800000000000000000e+01
  36. -1.280000000000000000e+02,-6.800000000000000000e+01
  37. -1.200000000000000000e+02,-7.800000000000000000e+01
  38. -9.200000000000000000e+01,-7.600000000000000000e+01
  39. -7.400000000000000000e+01,-7.200000000000000000e+01
  40. -2.800000000000000000e+01,-7.000000000000000000e+01
  41. -1.200000000000000000e+01,-5.600000000000000000e+01
  42. 8.000000000000000000e+00,-5.000000000000000000e+01
  43. 5.200000000000000000e+01,-4.400000000000000000e+01
  44. 6.600000000000000000e+01,-3.000000000000000000e+01
  45. 6.800000000000000000e+01,-2.400000000000000000e+01
  46. 8.600000000000000000e+01,-1.600000000000000000e+01
  47. 9.200000000000000000e+01,0.000000000000000000e+00
  48. 8.800000000000000000e+01,-4.000000000000000000e+00
  49. 9.000000000000000000e+01,0.000000000000000000e+00
  50. 8.600000000000000000e+01,4.000000000000000000e+00
  51. 7.800000000000000000e+01,6.000000000000000000e+00
  52. 8.000000000000000000e+01,2.000000000000000000e+00
  53. 7.200000000000000000e+01,0.000000000000000000e+00
  54. 6.600000000000000000e+01,1.200000000000000000e+01
  55. 6.800000000000000000e+01,0.000000000000000000e+00
  56. 6.600000000000000000e+01,2.000000000000000000e+00
  57. 6.000000000000000000e+01,1.000000000000000000e+01
  58. 6.200000000000000000e+01,2.000000000000000000e+00
  59. 6.800000000000000000e+01,4.000000000000000000e+00
  60. 7.000000000000000000e+01,2.000000000000000000e+00
  61. 6.000000000000000000e+01,-2.000000000000000000e+00
  62. 6.400000000000000000e+01,0.000000000000000000e+00
  63. 6.400000000000000000e+01,4.000000000000000000e+00
  64. 5.200000000000000000e+01,-4.000000000000000000e+00
  65. 6.600000000000000000e+01,-2.000000000000000000e+00
  66. 4.800000000000000000e+01,6.000000000000000000e+00
  67. 5.800000000000000000e+01,-8.000000000000000000e+00
  68. 4.400000000000000000e+01,1.200000000000000000e+01
  69. 4.600000000000000000e+01,-4.000000000000000000e+00
  70. 4.400000000000000000e+01,-8.000000000000000000e+00
  71. 3.600000000000000000e+01,1.000000000000000000e+01
  72. 3.000000000000000000e+01,-2.000000000000000000e+00
  73. 3.800000000000000000e+01,-1.000000000000000000e+01
  74. 3.400000000000000000e+01,4.000000000000000000e+00
  75. 4.000000000000000000e+01,-2.000000000000000000e+00
  76. 3.000000000000000000e+01,0.000000000000000000e+00
  77. 5.000000000000000000e+01,1.400000000000000000e+01
  78. 6.600000000000000000e+01,1.800000000000000000e+01
  79. 7.600000000000000000e+01,2.400000000000000000e+01
  80. 6.800000000000000000e+01,1.600000000000000000e+01
  81. 6.600000000000000000e+01,1.000000000000000000e+01
  82. 4.400000000000000000e+01,-8.000000000000000000e+00
  83. 4.400000000000000000e+01,-1.400000000000000000e+01
  84. 1.800000000000000000e+01,-2.000000000000000000e+01
  85. 1.800000000000000000e+01,-2.400000000000000000e+01
  86. 2.200000000000000000e+01,-1.200000000000000000e+01
  87. 3.200000000000000000e+01,-2.200000000000000000e+01
  88. 0.000000000000000000e+00,-2.800000000000000000e+01
  89. 8.000000000000000000e+00,-2.000000000000000000e+00
  90. 1.800000000000000000e+01,-1.000000000000000000e+01
  91. 1.000000000000000000e+01,-1.200000000000000000e+01
  92. 8.000000000000000000e+00,-2.000000000000000000e+00
  93. 6.000000000000000000e+00,-6.000000000000000000e+00
  94. 1.800000000000000000e+01,-1.400000000000000000e+01
  95. 6.000000000000000000e+00,-4.000000000000000000e+00
  96. 0.000000000000000000e+00,-4.000000000000000000e+00
  97. 6.000000000000000000e+00,-8.000000000000000000e+00
  98. 6.000000000000000000e+00,0.000000000000000000e+00
  99. -4.000000000000000000e+00,6.000000000000000000e+00
  100. 2.200000000000000000e+01,2.400000000000000000e+01
  101. 4.200000000000000000e+01,1.400000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算