You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

164.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. 1.600000000000000000e+01,8.000000000000000000e+00
  2. 9.600000000000000000e+01,-9.200000000000000000e+01
  3. 1.940000000000000000e+02,-2.200000000000000000e+02
  4. 2.120000000000000000e+02,-1.320000000000000000e+02
  5. 1.440000000000000000e+02,-5.000000000000000000e+00
  6. 1.600000000000000000e+01,2.400000000000000000e+01
  7. -9.600000000000000000e+01,1.100000000000000000e+02
  8. 2.000000000000000000e+00,1.680000000000000000e+02
  9. 4.000000000000000000e+01,2.340000000000000000e+02
  10. 1.800000000000000000e+01,3.260000000000000000e+02
  11. 4.800000000000000000e+01,3.260000000000000000e+02
  12. 2.200000000000000000e+01,1.980000000000000000e+02
  13. -1.000000000000000000e+01,7.000000000000000000e+01
  14. -6.800000000000000000e+01,8.000000000000000000e+00
  15. -6.600000000000000000e+01,-6.000000000000000000e+00
  16. -8.600000000000000000e+01,-1.200000000000000000e+01
  17. -9.400000000000000000e+01,-1.800000000000000000e+01
  18. -8.200000000000000000e+01,-1.000000000000000000e+01
  19. -1.020000000000000000e+02,-2.400000000000000000e+01
  20. -9.200000000000000000e+01,-2.200000000000000000e+01
  21. -1.040000000000000000e+02,-2.000000000000000000e+01
  22. -9.800000000000000000e+01,-2.600000000000000000e+01
  23. -1.140000000000000000e+02,-1.800000000000000000e+01
  24. -1.120000000000000000e+02,-3.600000000000000000e+01
  25. -1.220000000000000000e+02,-3.200000000000000000e+01
  26. -1.240000000000000000e+02,-3.200000000000000000e+01
  27. -1.300000000000000000e+02,-3.800000000000000000e+01
  28. -1.380000000000000000e+02,-4.200000000000000000e+01
  29. -1.540000000000000000e+02,-4.800000000000000000e+01
  30. -1.440000000000000000e+02,-4.800000000000000000e+01
  31. -1.520000000000000000e+02,-6.800000000000000000e+01
  32. -1.700000000000000000e+02,-6.000000000000000000e+01
  33. -1.520000000000000000e+02,-7.600000000000000000e+01
  34. -1.580000000000000000e+02,-8.600000000000000000e+01
  35. -1.560000000000000000e+02,-8.800000000000000000e+01
  36. -1.440000000000000000e+02,-9.600000000000000000e+01
  37. -1.220000000000000000e+02,-1.000000000000000000e+02
  38. -9.200000000000000000e+01,-9.600000000000000000e+01
  39. -7.800000000000000000e+01,-1.020000000000000000e+02
  40. -3.600000000000000000e+01,-9.400000000000000000e+01
  41. -2.600000000000000000e+01,-8.200000000000000000e+01
  42. 1.400000000000000000e+01,-7.000000000000000000e+01
  43. 3.200000000000000000e+01,-6.200000000000000000e+01
  44. 4.000000000000000000e+01,-4.800000000000000000e+01
  45. 7.000000000000000000e+01,-4.200000000000000000e+01
  46. 8.400000000000000000e+01,-8.000000000000000000e+00
  47. 7.800000000000000000e+01,-2.600000000000000000e+01
  48. 8.200000000000000000e+01,-8.000000000000000000e+00
  49. 1.100000000000000000e+02,-2.000000000000000000e+00
  50. 8.600000000000000000e+01,8.000000000000000000e+00
  51. 8.200000000000000000e+01,4.000000000000000000e+00
  52. 8.000000000000000000e+01,8.000000000000000000e+00
  53. 7.400000000000000000e+01,8.000000000000000000e+00
  54. 9.000000000000000000e+01,1.200000000000000000e+01
  55. 7.800000000000000000e+01,8.000000000000000000e+00
  56. 8.800000000000000000e+01,1.200000000000000000e+01
  57. 8.000000000000000000e+01,1.600000000000000000e+01
  58. 9.000000000000000000e+01,1.600000000000000000e+01
  59. 8.200000000000000000e+01,1.400000000000000000e+01
  60. 8.800000000000000000e+01,1.200000000000000000e+01
  61. 8.800000000000000000e+01,8.000000000000000000e+00
  62. 8.600000000000000000e+01,1.600000000000000000e+01
  63. 8.400000000000000000e+01,2.000000000000000000e+00
  64. 8.200000000000000000e+01,8.000000000000000000e+00
  65. 8.000000000000000000e+01,8.000000000000000000e+00
  66. 7.400000000000000000e+01,1.600000000000000000e+01
  67. 7.400000000000000000e+01,2.000000000000000000e+00
  68. 7.000000000000000000e+01,1.600000000000000000e+01
  69. 6.400000000000000000e+01,1.400000000000000000e+01
  70. 6.600000000000000000e+01,6.000000000000000000e+00
  71. 5.800000000000000000e+01,1.000000000000000000e+01
  72. 5.200000000000000000e+01,4.000000000000000000e+00
  73. 5.600000000000000000e+01,1.000000000000000000e+01
  74. 5.400000000000000000e+01,1.200000000000000000e+01
  75. 5.400000000000000000e+01,6.000000000000000000e+00
  76. 5.600000000000000000e+01,1.800000000000000000e+01
  77. 8.400000000000000000e+01,3.000000000000000000e+01
  78. 9.200000000000000000e+01,2.400000000000000000e+01
  79. 8.800000000000000000e+01,4.000000000000000000e+01
  80. 6.200000000000000000e+01,1.000000000000000000e+01
  81. 7.000000000000000000e+01,1.200000000000000000e+01
  82. 5.800000000000000000e+01,-2.000000000000000000e+00
  83. 5.200000000000000000e+01,0.000000000000000000e+00
  84. 2.800000000000000000e+01,4.000000000000000000e+00
  85. 3.000000000000000000e+01,-1.000000000000000000e+01
  86. 3.400000000000000000e+01,-4.000000000000000000e+00
  87. 1.400000000000000000e+01,-1.400000000000000000e+01
  88. 2.400000000000000000e+01,2.000000000000000000e+00
  89. 3.000000000000000000e+01,4.000000000000000000e+00
  90. 2.600000000000000000e+01,-2.000000000000000000e+00
  91. 1.000000000000000000e+01,-2.000000000000000000e+00
  92. 1.200000000000000000e+01,-2.000000000000000000e+00
  93. 1.800000000000000000e+01,-2.000000000000000000e+00
  94. 2.000000000000000000e+01,-6.000000000000000000e+00
  95. 1.600000000000000000e+01,2.000000000000000000e+00
  96. 1.000000000000000000e+01,-8.000000000000000000e+00
  97. 1.800000000000000000e+01,-1.000000000000000000e+01
  98. 1.800000000000000000e+01,8.000000000000000000e+00
  99. 2.600000000000000000e+01,2.800000000000000000e+01
  100. 6.000000000000000000e+01,-4.000000000000000000e+00

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算