You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

167.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. 5.400000000000000000e+01,-5.200000000000000000e+01
  2. 1.810000000000000000e+02,-1.800000000000000000e+02
  3. 2.460000000000000000e+02,-6.800000000000000000e+01
  4. 1.940000000000000000e+02,5.900000000000000000e+01
  5. 6.600000000000000000e+01,7.200000000000000000e+01
  6. -6.200000000000000000e+01,1.620000000000000000e+02
  7. 2.200000000000000000e+01,2.100000000000000000e+02
  8. 7.200000000000000000e+01,2.860000000000000000e+02
  9. 1.600000000000000000e+01,3.560000000000000000e+02
  10. 4.800000000000000000e+01,3.500000000000000000e+02
  11. 1.800000000000000000e+01,2.220000000000000000e+02
  12. -3.200000000000000000e+01,9.400000000000000000e+01
  13. -1.140000000000000000e+02,2.000000000000000000e+01
  14. -1.220000000000000000e+02,1.600000000000000000e+01
  15. -1.360000000000000000e+02,4.000000000000000000e+00
  16. -1.500000000000000000e+02,4.000000000000000000e+00
  17. -1.540000000000000000e+02,6.000000000000000000e+00
  18. -1.600000000000000000e+02,-4.000000000000000000e+00
  19. -1.640000000000000000e+02,-2.000000000000000000e+00
  20. -1.640000000000000000e+02,-2.000000000000000000e+00
  21. -1.860000000000000000e+02,-1.000000000000000000e+01
  22. -1.860000000000000000e+02,-1.000000000000000000e+01
  23. -2.000000000000000000e+02,-6.000000000000000000e+00
  24. -1.940000000000000000e+02,-2.000000000000000000e+01
  25. -2.000000000000000000e+02,-1.800000000000000000e+01
  26. -2.280000000000000000e+02,-1.400000000000000000e+01
  27. -2.040000000000000000e+02,-3.200000000000000000e+01
  28. -2.220000000000000000e+02,-3.000000000000000000e+01
  29. -2.220000000000000000e+02,-3.200000000000000000e+01
  30. -2.420000000000000000e+02,-5.400000000000000000e+01
  31. -2.340000000000000000e+02,-5.600000000000000000e+01
  32. -2.400000000000000000e+02,-6.000000000000000000e+01
  33. -2.280000000000000000e+02,-7.000000000000000000e+01
  34. -2.220000000000000000e+02,-7.600000000000000000e+01
  35. -2.120000000000000000e+02,-8.000000000000000000e+01
  36. -1.940000000000000000e+02,-8.000000000000000000e+01
  37. -1.540000000000000000e+02,-8.400000000000000000e+01
  38. -1.320000000000000000e+02,-7.600000000000000000e+01
  39. -1.040000000000000000e+02,-7.000000000000000000e+01
  40. -7.000000000000000000e+01,-6.400000000000000000e+01
  41. -5.200000000000000000e+01,-5.200000000000000000e+01
  42. -2.600000000000000000e+01,-4.000000000000000000e+01
  43. -1.600000000000000000e+01,-2.800000000000000000e+01
  44. 1.200000000000000000e+01,-1.600000000000000000e+01
  45. 8.000000000000000000e+00,-1.000000000000000000e+01
  46. 1.400000000000000000e+01,-2.000000000000000000e+00
  47. 1.000000000000000000e+01,1.200000000000000000e+01
  48. 1.000000000000000000e+01,6.000000000000000000e+00
  49. 0.000000000000000000e+00,6.000000000000000000e+00
  50. -8.000000000000000000e+00,2.000000000000000000e+01
  51. -8.000000000000000000e+00,1.400000000000000000e+01
  52. -2.000000000000000000e+01,1.400000000000000000e+01
  53. -3.000000000000000000e+01,1.600000000000000000e+01
  54. -2.600000000000000000e+01,1.600000000000000000e+01
  55. -2.400000000000000000e+01,1.400000000000000000e+01
  56. -3.000000000000000000e+01,2.400000000000000000e+01
  57. -2.400000000000000000e+01,1.800000000000000000e+01
  58. -1.600000000000000000e+01,1.800000000000000000e+01
  59. -2.200000000000000000e+01,1.800000000000000000e+01
  60. -3.000000000000000000e+01,2.000000000000000000e+01
  61. -3.600000000000000000e+01,1.400000000000000000e+01
  62. -4.200000000000000000e+01,2.400000000000000000e+01
  63. -2.800000000000000000e+01,1.200000000000000000e+01
  64. -3.400000000000000000e+01,2.000000000000000000e+01
  65. -4.000000000000000000e+01,2.200000000000000000e+01
  66. -5.200000000000000000e+01,1.000000000000000000e+01
  67. -3.600000000000000000e+01,1.000000000000000000e+01
  68. -5.200000000000000000e+01,1.800000000000000000e+01
  69. -6.200000000000000000e+01,8.000000000000000000e+00
  70. -6.200000000000000000e+01,1.400000000000000000e+01
  71. -6.400000000000000000e+01,1.000000000000000000e+01
  72. -5.200000000000000000e+01,1.000000000000000000e+01
  73. -7.000000000000000000e+01,1.200000000000000000e+01
  74. -6.800000000000000000e+01,1.000000000000000000e+01
  75. -7.000000000000000000e+01,1.200000000000000000e+01
  76. -6.600000000000000000e+01,2.200000000000000000e+01
  77. -5.400000000000000000e+01,2.600000000000000000e+01
  78. -3.000000000000000000e+01,4.400000000000000000e+01
  79. -4.600000000000000000e+01,3.400000000000000000e+01
  80. -5.200000000000000000e+01,3.400000000000000000e+01
  81. -7.600000000000000000e+01,2.800000000000000000e+01
  82. -5.400000000000000000e+01,1.000000000000000000e+01
  83. -7.400000000000000000e+01,6.000000000000000000e+00
  84. -8.600000000000000000e+01,0.000000000000000000e+00
  85. -1.060000000000000000e+02,6.000000000000000000e+00
  86. -1.020000000000000000e+02,0.000000000000000000e+00
  87. -8.400000000000000000e+01,-6.000000000000000000e+00
  88. -1.180000000000000000e+02,-6.000000000000000000e+00
  89. -1.160000000000000000e+02,6.000000000000000000e+00
  90. -1.160000000000000000e+02,-4.000000000000000000e+00
  91. -1.220000000000000000e+02,4.000000000000000000e+00
  92. -1.140000000000000000e+02,2.000000000000000000e+00
  93. -1.100000000000000000e+02,4.000000000000000000e+00
  94. -1.100000000000000000e+02,0.000000000000000000e+00
  95. -1.100000000000000000e+02,8.000000000000000000e+00
  96. -1.140000000000000000e+02,-2.000000000000000000e+00
  97. -1.060000000000000000e+02,0.000000000000000000e+00
  98. -1.200000000000000000e+02,1.600000000000000000e+01
  99. -7.800000000000000000e+01,3.600000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算