You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

172.csv 5.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. 3.200000000000000000e+01,2.600000000000000000e+01
  2. 4.600000000000000000e+01,-1.000000000000000000e+01
  3. 1.460000000000000000e+02,-1.380000000000000000e+02
  4. 2.730000000000000000e+02,-2.320000000000000000e+02
  5. 1.450000000000000000e+02,-1.050000000000000000e+02
  6. 1.140000000000000000e+02,2.200000000000000000e+01
  7. -1.400000000000000000e+01,9.000000000000000000e+01
  8. -2.000000000000000000e+01,1.660000000000000000e+02
  9. 4.400000000000000000e+01,2.280000000000000000e+02
  10. 5.600000000000000000e+01,3.180000000000000000e+02
  11. 5.400000000000000000e+01,3.560000000000000000e+02
  12. 3.400000000000000000e+01,2.480000000000000000e+02
  13. 4.200000000000000000e+01,1.200000000000000000e+02
  14. -5.600000000000000000e+01,6.000000000000000000e+00
  15. -8.800000000000000000e+01,4.000000000000000000e+00
  16. -8.000000000000000000e+01,-6.000000000000000000e+00
  17. -8.400000000000000000e+01,-2.400000000000000000e+01
  18. -1.220000000000000000e+02,-1.600000000000000000e+01
  19. -1.080000000000000000e+02,-2.200000000000000000e+01
  20. -1.220000000000000000e+02,-2.200000000000000000e+01
  21. -1.560000000000000000e+02,-2.600000000000000000e+01
  22. -9.200000000000000000e+01,-1.000000000000000000e+01
  23. -1.540000000000000000e+02,-2.600000000000000000e+01
  24. -1.440000000000000000e+02,-2.400000000000000000e+01
  25. -1.620000000000000000e+02,-2.800000000000000000e+01
  26. -1.580000000000000000e+02,-2.000000000000000000e+01
  27. -1.520000000000000000e+02,-3.400000000000000000e+01
  28. -1.620000000000000000e+02,-4.600000000000000000e+01
  29. -2.000000000000000000e+02,-4.200000000000000000e+01
  30. -1.520000000000000000e+02,-4.800000000000000000e+01
  31. -2.220000000000000000e+02,-5.600000000000000000e+01
  32. -1.520000000000000000e+02,-6.200000000000000000e+01
  33. -1.980000000000000000e+02,-6.400000000000000000e+01
  34. -1.840000000000000000e+02,-7.000000000000000000e+01
  35. -1.740000000000000000e+02,-7.800000000000000000e+01
  36. -1.640000000000000000e+02,-8.200000000000000000e+01
  37. -1.440000000000000000e+02,-8.600000000000000000e+01
  38. -1.020000000000000000e+02,-9.800000000000000000e+01
  39. -1.020000000000000000e+02,-8.000000000000000000e+01
  40. -6.600000000000000000e+01,-7.800000000000000000e+01
  41. -1.000000000000000000e+01,-6.000000000000000000e+01
  42. -6.000000000000000000e+00,-6.600000000000000000e+01
  43. 1.000000000000000000e+01,-4.600000000000000000e+01
  44. 2.400000000000000000e+01,-3.600000000000000000e+01
  45. 5.000000000000000000e+01,-1.200000000000000000e+01
  46. 6.200000000000000000e+01,-1.000000000000000000e+01
  47. 5.400000000000000000e+01,-1.200000000000000000e+01
  48. 5.000000000000000000e+01,6.000000000000000000e+00
  49. 6.000000000000000000e+01,1.000000000000000000e+01
  50. 4.600000000000000000e+01,1.600000000000000000e+01
  51. 5.000000000000000000e+01,2.000000000000000000e+01
  52. 6.600000000000000000e+01,1.400000000000000000e+01
  53. 3.800000000000000000e+01,1.600000000000000000e+01
  54. 1.600000000000000000e+01,2.400000000000000000e+01
  55. 2.000000000000000000e+01,3.000000000000000000e+01
  56. 4.400000000000000000e+01,1.600000000000000000e+01
  57. 5.000000000000000000e+01,5.200000000000000000e+01
  58. 2.400000000000000000e+01,1.600000000000000000e+01
  59. 3.200000000000000000e+01,3.400000000000000000e+01
  60. 4.200000000000000000e+01,2.400000000000000000e+01
  61. 4.200000000000000000e+01,3.400000000000000000e+01
  62. 3.400000000000000000e+01,2.400000000000000000e+01
  63. 4.400000000000000000e+01,3.200000000000000000e+01
  64. 1.600000000000000000e+01,3.200000000000000000e+01
  65. 3.000000000000000000e+01,2.200000000000000000e+01
  66. 2.400000000000000000e+01,2.000000000000000000e+01
  67. -2.000000000000000000e+00,2.000000000000000000e+01
  68. 2.600000000000000000e+01,3.400000000000000000e+01
  69. 2.000000000000000000e+00,5.000000000000000000e+01
  70. -6.000000000000000000e+00,2.400000000000000000e+01
  71. 2.000000000000000000e+00,3.600000000000000000e+01
  72. 2.000000000000000000e+00,2.600000000000000000e+01
  73. 6.000000000000000000e+00,3.200000000000000000e+01
  74. -2.800000000000000000e+01,6.000000000000000000e+00
  75. 2.800000000000000000e+01,4.200000000000000000e+01
  76. -1.600000000000000000e+01,1.200000000000000000e+01
  77. 1.200000000000000000e+01,4.200000000000000000e+01
  78. 4.400000000000000000e+01,5.000000000000000000e+01
  79. 4.000000000000000000e+01,5.400000000000000000e+01
  80. 5.200000000000000000e+01,3.600000000000000000e+01
  81. 1.000000000000000000e+01,3.800000000000000000e+01
  82. 0.000000000000000000e+00,1.600000000000000000e+01
  83. 1.200000000000000000e+01,0.000000000000000000e+00
  84. -8.000000000000000000e+00,1.000000000000000000e+01
  85. -3.000000000000000000e+01,1.000000000000000000e+01
  86. -2.400000000000000000e+01,0.000000000000000000e+00
  87. -3.400000000000000000e+01,0.000000000000000000e+00
  88. -1.800000000000000000e+01,1.200000000000000000e+01
  89. -1.800000000000000000e+01,1.800000000000000000e+01
  90. -2.800000000000000000e+01,2.000000000000000000e+01
  91. -4.200000000000000000e+01,1.000000000000000000e+01
  92. -2.400000000000000000e+01,1.000000000000000000e+01
  93. -4.800000000000000000e+01,2.600000000000000000e+01
  94. -1.200000000000000000e+01,1.200000000000000000e+01
  95. -3.200000000000000000e+01,1.000000000000000000e+01
  96. -2.000000000000000000e+01,1.000000000000000000e+01
  97. -2.800000000000000000e+01,1.800000000000000000e+01
  98. -2.800000000000000000e+01,2.000000000000000000e+01
  99. -3.000000000000000000e+01,2.000000000000000000e+01
  100. -2.800000000000000000e+01,5.200000000000000000e+01

全栈的自动化机器学习系统,主要针对多变量时间序列数据的异常检测。TODS提供了详尽的用于构建基于机器学习的异常检测系统的模块,它们包括:数据处理(data processing),时间序列处理( time series processing),特征分析(feature analysis),检测算法(detection algorithms),和强化模块( reinforcement module)。这些模块所提供的功能包括常见的数据预处理、时间序列数据的平滑或变换,从时域或频域中抽取特征、多种多样的检测算