diff --git a/tods/data_processing/SKImputer.py b/tods/data_processing/SKImputer.py index 18f7612..4e6c3b0 100644 --- a/tods/data_processing/SKImputer.py +++ b/tods/data_processing/SKImputer.py @@ -194,7 +194,7 @@ class SKImputerPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, Param self._clf.fit(self._training_inputs) self._fitted = True else: - if self.hyperparams['error_on_no_input']: + if self.hyperparams['error_on_no_input']: # pragma: no cover raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") return CallResult(None) @@ -215,7 +215,7 @@ class SKImputerPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, Param output.columns = [inputs.columns[idx] for idx in range(len(inputs.columns)) if idx in self._training_indices] output = [output] else: - if self.hyperparams['error_on_no_input']: + if self.hyperparams['error_on_no_input']: # pragma: no cover raise RuntimeError("No input columns were selected") self.logger.warn("No input columns were selected") _, _, dropped_cols = self._get_columns_to_fit(inputs, self.hyperparams) @@ -308,7 +308,7 @@ class SKImputerPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, Param return columns_to_remove @classmethod - def _can_produce_column(cls, inputs_metadata: metadata_base.DataMetadata, column_index: int, hyperparams: Hyperparams) -> bool: + def _can_produce_column(cls, inputs_metadata: metadata_base.DataMetadata, column_index: int, hyperparams: Hyperparams) -> bool: # pragma: no cover column_metadata = inputs_metadata.query((metadata_base.ALL_ELEMENTS, column_index)) accepted_structural_types = (int, float, numpy.integer, numpy.float64) @@ -330,7 +330,7 @@ class SKImputerPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, Param @classmethod - def _get_target_columns_metadata(cls, outputs_metadata: metadata_base.DataMetadata, hyperparams) -> List[OrderedDict]: + def _get_target_columns_metadata(cls, outputs_metadata: metadata_base.DataMetadata, hyperparams) -> List[OrderedDict]: # pragma: no cover outputs_length = outputs_metadata.query((metadata_base.ALL_ELEMENTS,))['dimension']['length'] target_columns_metadata: List[OrderedDict] = []