@@ -0,0 +1,53 @@ | |||||
import numpy as np | |||||
from tods.tods_skinterface.primitiveSKI.detection_algorithm.DeepLog_skinterface import DeepLogSKI | |||||
from sklearn.metrics import precision_recall_curve | |||||
from sklearn.metrics import accuracy_score | |||||
from sklearn.metrics import confusion_matrix | |||||
from sklearn.metrics import classification_report | |||||
import matplotlib.pyplot as plt | |||||
from sklearn import metrics | |||||
#prepare the data | |||||
data = np.loadtxt("./500_UCR_Anomaly_robotDOG1_10000_19280_19360.txt") | |||||
X_train = np.expand_dims(data[:10000], axis=1) | |||||
X_test = np.expand_dims(data[10000:], axis=1) | |||||
transformer = DeepLogSKI() | |||||
transformer.fit(X_train) | |||||
prediction_labels_train = transformer.predict(X_train) | |||||
prediction_labels = transformer.predict(X_test) | |||||
prediction_score = transformer.predict_score(X_test) | |||||
print("Primitive: ", transformer.primitive) | |||||
print("Prediction Labels\n", prediction_labels) | |||||
print("Prediction Score\n", prediction_score) | |||||
# y_true = prediction_labels_train[:1000] | |||||
# y_pred = prediction_labels[:1000] | |||||
y_true = prediction_labels_train | |||||
y_pred = prediction_labels | |||||
print('Accuracy Score: ', accuracy_score(y_true, y_pred)) | |||||
confusion_matrix(y_true, y_pred) | |||||
print(classification_report(y_true, y_pred)) | |||||
precision, recall, thresholds = precision_recall_curve(y_true, y_pred) | |||||
f1_scores = 2*recall*precision/(recall+precision) | |||||
print('Best threshold: ', thresholds[np.argmax(f1_scores)]) | |||||
print('Best F1-Score: ', np.max(f1_scores)) | |||||
fpr, tpr, threshold = metrics.roc_curve(y_true, y_pred) | |||||
roc_auc = metrics.auc(fpr, tpr) | |||||
plt.title('ROC') | |||||
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) | |||||
plt.legend(loc = 'lower right') | |||||
plt.ylabel('True Positive Rate') | |||||
plt.xlabel('False Positive Rate') | |||||
plt.show() |
@@ -0,0 +1,44 @@ | |||||
import numpy as np | |||||
from tods.tods_skinterface.primitiveSKI.detection_algorithm.IsolationForest_skinterface import IsolationForestSKI | |||||
from sklearn.metrics import precision_recall_curve | |||||
from sklearn.metrics import accuracy_score | |||||
from sklearn.metrics import confusion_matrix | |||||
from sklearn.metrics import classification_report | |||||
#prepare the data | |||||
data = np.loadtxt("./500_UCR_Anomaly_robotDOG1_10000_19280_19360.txt") | |||||
# print("shape:", data.shape) | |||||
# print("datatype of data:",data.dtype) | |||||
# print("First 5 rows:\n", data[:5]) | |||||
X_train = np.expand_dims(data[:10000], axis=1) | |||||
X_test = np.expand_dims(data[10000:], axis=1) | |||||
# print("First 5 rows train:\n", X_train[:5]) | |||||
# print("First 5 rows test:\n", X_test[:5]) | |||||
transformer = IsolationForestSKI() | |||||
transformer.fit(X_train) | |||||
prediction_labels_train = transformer.predict(X_train) | |||||
prediction_labels = transformer.predict(X_test) | |||||
prediction_score = transformer.predict_score(X_test) | |||||
print("Primitive: ", transformer.primitive) | |||||
print("Prediction Labels\n", prediction_labels) | |||||
print("Prediction Score\n", prediction_score) | |||||
y_true = prediction_labels_train | |||||
y_pred = prediction_labels | |||||
print('Accuracy Score: ', accuracy_score(y_true, y_pred)) | |||||
confusion_matrix(y_true, y_pred) | |||||
print(classification_report(y_true, y_pred)) | |||||
precision, recall, thresholds = precision_recall_curve(y_true, y_pred) | |||||
f1_scores = 2*recall*precision/(recall+precision) | |||||
print('Best threshold: ', thresholds[np.argmax(f1_scores)]) | |||||
print('Best F1-Score: ', np.max(f1_scores)) |
@@ -0,0 +1,37 @@ | |||||
import numpy as np | |||||
from tods.tods_skinterface.primitiveSKI.detection_algorithm.MatrixProfile_skinterface import MatrixProfileSKI | |||||
from sklearn.metrics import precision_recall_curve | |||||
from sklearn.metrics import accuracy_score | |||||
from sklearn.metrics import confusion_matrix | |||||
from sklearn.metrics import classification_report | |||||
#prepare the data | |||||
data = np.loadtxt("./500_UCR_Anomaly_robotDOG1_10000_19280_19360.txt") | |||||
X_train = np.expand_dims(data[:10000], axis=1) | |||||
X_test = np.expand_dims(data[10000:], axis=1) | |||||
transformer = MatrixProfileSKI() | |||||
transformer.fit(X_train) | |||||
prediction_labels_train = transformer.predict(X_train) | |||||
prediction_labels = transformer.predict(X_test) | |||||
prediction_score = transformer.predict_score(X_test) | |||||
print("Primitive: ", transformer.primitive) | |||||
print("Prediction Labels\n", prediction_labels) | |||||
print("Prediction Score\n", prediction_score) | |||||
y_true = prediction_labels_train | |||||
y_pred = prediction_labels | |||||
print('Accuracy Score: ', accuracy_score(y_true, y_pred)) | |||||
confusion_matrix(y_true, y_pred) | |||||
print(classification_report(y_true, y_pred)) | |||||
precision, recall, thresholds = precision_recall_curve(y_true, y_pred) | |||||
f1_scores = 2*recall*precision/(recall+precision) | |||||
print('Best threshold: ', thresholds[np.argmax(f1_scores)]) | |||||
print('Best F1-Score: ', np.max(f1_scores)) |
@@ -0,0 +1,54 @@ | |||||
import numpy as np | |||||
from tods.tods_skinterface.primitiveSKI.detection_algorithm.Telemanom_skinterface import TelemanomSKI | |||||
from sklearn.metrics import precision_recall_curve | |||||
from sklearn.metrics import accuracy_score | |||||
from sklearn.metrics import confusion_matrix | |||||
from sklearn.metrics import classification_report | |||||
import matplotlib.pyplot as plt | |||||
from sklearn import metrics | |||||
#prepare the data | |||||
data = np.loadtxt("./500_UCR_Anomaly_robotDOG1_10000_19280_19360.txt") | |||||
# print("shape:", data.shape) | |||||
# print("datatype of data:",data.dtype) | |||||
# print("First 5 rows:\n", data[:5]) | |||||
X_train = np.expand_dims(data[:10000], axis=1) | |||||
X_test = np.expand_dims(data[10000:], axis=1) | |||||
# print("First 5 rows train:\n", X_train[:5]) | |||||
# print("First 5 rows test:\n", X_test[:5]) | |||||
transformer = TelemanomSKI(l_s= 2, n_predictions= 1) | |||||
transformer.fit(X_train) | |||||
prediction_labels_train = transformer.predict(X_train) | |||||
prediction_labels = transformer.predict(X_test) | |||||
prediction_score = transformer.predict_score(X_test) | |||||
print("Primitive: ", transformer.primitive) | |||||
print("Prediction Labels\n", prediction_labels) | |||||
print("Prediction Score\n", prediction_score) | |||||
y_true = prediction_labels_train | |||||
y_pred = prediction_labels | |||||
print('Accuracy Score: ', accuracy_score(y_true, y_pred)) | |||||
confusion_matrix(y_true, y_pred) | |||||
print(classification_report(y_true, y_pred)) | |||||
precision, recall, thresholds = precision_recall_curve(y_true, y_pred) | |||||
f1_scores = 2*recall*precision/(recall+precision) | |||||
print('Best threshold: ', thresholds[np.argmax(f1_scores)]) | |||||
print('Best F1-Score: ', np.max(f1_scores)) | |||||
fpr, tpr, threshold = metrics.roc_curve(y_true, y_pred) | |||||
roc_auc = metrics.auc(fpr, tpr) | |||||
plt.title('ROC') | |||||
plt.plot(fpr, tpr, 'b', label = 'AUC = %0.2f' % roc_auc) | |||||
plt.legend(loc = 'lower right') | |||||
plt.ylabel('True Positive Rate') | |||||
plt.xlabel('False Positive Rate') | |||||
plt.show() |