Browse Source

modified metadata of feature_analysis module, fix bugs in primitive_tests

master
lhenry15 4 years ago
parent
commit
4573e5bb56
34 changed files with 522 additions and 746 deletions
  1. +1
    -1
      examples/axolotl_interface/example_pipelines/autoencoder_pipeline.json
  2. +3
    -3
      primitive_tests/feature_analysis/TruncatedSVD_pipeline.py
  3. +3
    -2
      primitive_tests/test.sh
  4. +9
    -5
      tods/feature_analysis/AutoCorrelation.py
  5. +11
    -6
      tods/feature_analysis/BKFilter.py
  6. +7
    -12
      tods/feature_analysis/DiscreteCosineTransform.py
  7. +9
    -15
      tods/feature_analysis/FastFourierTransform.py
  8. +11
    -6
      tods/feature_analysis/HPFilter.py
  9. +16
    -22
      tods/feature_analysis/NonNegativeMatrixFactorization.py
  10. +15
    -10
      tods/feature_analysis/SKTruncatedSVD.py
  11. +19
    -30
      tods/feature_analysis/SpectralResidualTransform.py
  12. +19
    -29
      tods/feature_analysis/StatisticalAbsEnergy.py
  13. +18
    -30
      tods/feature_analysis/StatisticalAbsSum.py
  14. +18
    -31
      tods/feature_analysis/StatisticalGmean.py
  15. +19
    -29
      tods/feature_analysis/StatisticalHmean.py
  16. +18
    -30
      tods/feature_analysis/StatisticalKurtosis.py
  17. +18
    -29
      tods/feature_analysis/StatisticalMaximum.py
  18. +19
    -30
      tods/feature_analysis/StatisticalMean.py
  19. +18
    -30
      tods/feature_analysis/StatisticalMeanAbs.py
  20. +19
    -30
      tods/feature_analysis/StatisticalMeanAbsTemporalDerivative.py
  21. +19
    -30
      tods/feature_analysis/StatisticalMeanTemporalDerivative.py
  22. +19
    -30
      tods/feature_analysis/StatisticalMedian.py
  23. +19
    -30
      tods/feature_analysis/StatisticalMedianAbsoluteDeviation.py
  24. +19
    -30
      tods/feature_analysis/StatisticalMinimum.py
  25. +19
    -30
      tods/feature_analysis/StatisticalSkew.py
  26. +19
    -30
      tods/feature_analysis/StatisticalStd.py
  27. +18
    -30
      tods/feature_analysis/StatisticalVar.py
  28. +20
    -30
      tods/feature_analysis/StatisticalVariation.py
  29. +19
    -30
      tods/feature_analysis/StatisticalVecSum.py
  30. +19
    -30
      tods/feature_analysis/StatisticalWillisonAmplitude.py
  31. +18
    -29
      tods/feature_analysis/StatisticalZeroCrossing.py
  32. +15
    -10
      tods/feature_analysis/TRMF.py
  33. +15
    -13
      tods/feature_analysis/WaveletTransform.py
  34. +14
    -14
      tods/timeseries_processing/HoltSmoothing.py

+ 1
- 1
examples/axolotl_interface/example_pipelines/autoencoder_pipeline.json View File

@@ -1 +1 @@
{"id": "5478db87-2eea-45c7-b0c1-f6a2fb180a61", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2021-02-04T06:35:44.477042Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.6.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "4b42ce1e-9b98-4a25-b68e-fad13311eb65", "version": "0.3.0", "python_path": "d3m.primitives.tods.data_processing.dataset_to_dataframe", "name": "Extract a DataFrame from a Dataset", "digest": "f817673b67b0bf1fad5efb694e44a59b9c15931520b419f3a852f79152f58bb7"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "d510cb7a-1782-4f51-b44c-58f0236e47c7", "version": "0.6.0", "python_path": "d3m.primitives.tods.data_processing.column_parser", "name": "Parses strings into their types", "digest": "6aea6b48ddcd847030b423ebf2cac62e67b2935d93f75d10fa0712ea019b2739"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", "version": "0.4.0", "python_path": "d3m.primitives.tods.data_processing.extract_columns_by_semantic_types", "name": "Extracts columns by semantic type", "digest": "e165d114bca8e1e47f349fffbbf2cf8872f0222328287e24acd8ac8c1cf2511c"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/Attribute"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "4503a4c6-42f7-45a1-a1d4-ed69699cf5e1", "version": "0.4.0", "python_path": "d3m.primitives.tods.data_processing.extract_columns_by_semantic_types", "name": "Extracts columns by semantic type", "digest": "e165d114bca8e1e47f349fffbbf2cf8872f0222328287e24acd8ac8c1cf2511c"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/TrueTarget"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "642de2e7-5590-3cab-9266-2a53c326c461", "version": "0.0.1", "python_path": "d3m.primitives.tods.timeseries_processing.transformation.axiswise_scaler", "name": "Axis_wise_scale"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "67e7fcdf-d645-3417-9aa4-85cd369487d9", "version": "0.0.1", "python_path": "d3m.primitives.tods.detection_algorithm.pyod_ae", "name": "TODS.anomaly_detection_primitives.AutoEncoder"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.4.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "8d38b340-f83f-4877-baaa-162f8e551736", "version": "0.3.0", "python_path": "d3m.primitives.tods.data_processing.construct_predictions", "name": "Construct pipeline predictions output", "digest": "c8a5cb30cc5b6742dbf024cbd54d5283937864c5d5dd9f3d0fb242fa406b1736"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.5.produce"}, "reference": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "aa2c6d9f9a56d76f5f2e8bb29ad5b21b43970a2acb7a7a7695e057bfcd1fdabd"}
{"id": "bfd8aedf-36be-4dad-af8a-c324a03db5f9", "schema": "https://metadata.datadrivendiscovery.org/schemas/v0/pipeline.json", "created": "2021-02-13T17:02:35.500457Z", "inputs": [{"name": "inputs"}], "outputs": [{"data": "steps.6.produce", "name": "output predictions"}], "steps": [{"type": "PRIMITIVE", "primitive": {"id": "c78138d9-9377-31dc-aee8-83d9df049c60", "version": "0.3.0", "python_path": "d3m.primitives.tods.data_processing.dataset_to_dataframe", "name": "Extract a DataFrame from a Dataset"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "inputs.0"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "81235c29-aeb9-3828-911a-1b25319b6998", "version": "0.6.0", "python_path": "d3m.primitives.tods.data_processing.column_parser", "name": "Parses strings into their types"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "a996cd89-ddf0-367f-8e7f-8c013cbc2891", "version": "0.4.0", "python_path": "d3m.primitives.tods.data_processing.extract_columns_by_semantic_types", "name": "Extracts columns by semantic type"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/Attribute"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "a996cd89-ddf0-367f-8e7f-8c013cbc2891", "version": "0.4.0", "python_path": "d3m.primitives.tods.data_processing.extract_columns_by_semantic_types", "name": "Extracts columns by semantic type"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.0.produce"}}, "outputs": [{"id": "produce"}], "hyperparams": {"semantic_types": {"type": "VALUE", "data": ["https://metadata.datadrivendiscovery.org/types/TrueTarget"]}}}, {"type": "PRIMITIVE", "primitive": {"id": "642de2e7-5590-3cab-9266-2a53c326c461", "version": "0.0.1", "python_path": "d3m.primitives.tods.timeseries_processing.transformation.axiswise_scaler", "name": "Axis_wise_scale"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.2.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "67e7fcdf-d645-3417-9aa4-85cd369487d9", "version": "0.0.1", "python_path": "d3m.primitives.tods.detection_algorithm.pyod_ae", "name": "TODS.anomaly_detection_primitives.AutoEncoder"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.4.produce"}}, "outputs": [{"id": "produce"}]}, {"type": "PRIMITIVE", "primitive": {"id": "2530840a-07d4-3874-b7d8-9eb5e4ae2bf3", "version": "0.3.0", "python_path": "d3m.primitives.tods.data_processing.construct_predictions", "name": "Construct pipeline predictions output"}, "arguments": {"inputs": {"type": "CONTAINER", "data": "steps.5.produce"}, "reference": {"type": "CONTAINER", "data": "steps.1.produce"}}, "outputs": [{"id": "produce"}]}], "digest": "01ad8ccf817150186ca15157a4f02ee1f738582137321a8a5a4a3252832ce555"}

+ 3
- 3
primitive_tests/feature_analysis/TruncatedSVD_pipeline.py View File

@@ -29,12 +29,12 @@ pipeline_description.add_step(step_2)


# Step 3: TruncatedSVD # Step 3: TruncatedSVD
step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.feature_analysis.truncated_svd')) step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.feature_analysis.truncated_svd'))
step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.3.produce')
step_3.add_output('produce')
step_3.add_hyperparameter(name = 'n_components', argument_type=ArgumentType.VALUE, data = 3) step_3.add_hyperparameter(name = 'n_components', argument_type=ArgumentType.VALUE, data = 3)
step_3.add_hyperparameter(name = 'use_columns', argument_type=ArgumentType.VALUE, data = (2, 3, 4, 5)) step_3.add_hyperparameter(name = 'use_columns', argument_type=ArgumentType.VALUE, data = (2, 3, 4, 5))
step_3.add_hyperparameter(name = 'return_result', argument_type=ArgumentType.VALUE, data = 'append') step_3.add_hyperparameter(name = 'return_result', argument_type=ArgumentType.VALUE, data = 'append')
step_3.add_hyperparameter(name = 'use_semantic_types', argument_type=ArgumentType.VALUE, data = True) step_3.add_hyperparameter(name = 'use_semantic_types', argument_type=ArgumentType.VALUE, data = True)
step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.2.produce')
step_3.add_output('produce')
pipeline_description.add_step(step_3) pipeline_description.add_step(step_3)


# Final Output # Final Output
@@ -44,4 +44,4 @@ pipeline_description.add_output(name='output predictions', data_reference='steps
data = pipeline_description.to_json() data = pipeline_description.to_json()
with open('example_pipeline.json', 'w') as f: with open('example_pipeline.json', 'w') as f:
f.write(data) f.write(data)
print(data)
print(data)

+ 3
- 2
primitive_tests/test.sh View File

@@ -1,12 +1,13 @@
#!/bin/bash #!/bin/bash


#modules="data_processing timeseries_processing feature_analysis detection_algorithms reinforcement" #modules="data_processing timeseries_processing feature_analysis detection_algorithms reinforcement"
modules="data_processing timeseries_processing"
#modules="data_processing timeseries_processing"
modules="feature_analysis"
#test_scripts=$(ls primitive_tests | grep -v -f tested_file.txt) #test_scripts=$(ls primitive_tests | grep -v -f tested_file.txt)


for module in $modules for module in $modules
do do
test_scripts=$(ls $module)
test_scripts=$(ls $module | grep -v -f tested_file.txt)


for file in $test_scripts for file in $test_scripts
do do


+ 9
- 5
tods/feature_analysis/AutoCorrelation.py View File

@@ -220,13 +220,17 @@ class AutoCorrelationPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outp
'__author__': "DATA Lab @Texas A&M University", '__author__': "DATA Lab @Texas A&M University",
'name': "AutoCorrelation of values", 'name': "AutoCorrelation of values",
'python_path': 'd3m.primitives.tods.feature_analysis.auto_correlation', 'python_path': 'd3m.primitives.tods.feature_analysis.auto_correlation',
'source': {'name': "DATALAB @Taxes A&M University", 'contact': 'mailto:khlai037@tamu.edu',
'uris': ['https://gitlab.com/lhenry15/tods/-/blob/Yile/anomaly-primitives/anomaly_primitives/AutoCorrelation.py']},
'algorithm_types': [metadata_base.PrimitiveAlgorithmType.AUTOCORRELATION,],
'source': {
'name': "DATALAB @Taxes A&M University",
'contact': 'mailto:khlai037@tamu.edu',
},
'version': '0.0.2',
'hyperparams_to_tune': ['unbiased', 'nlags', 'qstat', 'fft', 'alpha', 'missing'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION, 'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'AutocorrelationPrimitive')), 'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'AutocorrelationPrimitive')),
'hyperparams_to_tune': ['unbiased', 'nlags', 'qstat', 'fft', 'alpha', 'missing'],
'version': '0.0.2',
}) })


def __init__(self, *, def __init__(self, *,


+ 11
- 6
tods/feature_analysis/BKFilter.py View File

@@ -7,6 +7,7 @@ import sklearn
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -154,17 +155,21 @@ class BKFilterPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outputs, Hy
Decides what semantic type to attach to generated attributes' Decides what semantic type to attach to generated attributes'
""" """


__author__: "DATA Lab at Texas A&M University"
metadata = metadata_base.PrimitiveMetadata({ metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab at Texas A&M University",
"name": "Baxter-King Filter Primitive", "name": "Baxter-King Filter Primitive",
"python_path": "d3m.primitives.tods.feature_analysis.bk_filter", "python_path": "d3m.primitives.tods.feature_analysis.bk_filter",
"source": {'name': 'DATA Lab at Texas A&M University', 'contact': 'mailto:khlai037@tamu.edu',
'uris': ['https://gitlab.com/lhenry15/tods.git', 'https://gitlab.com/lhenry15/tods/-/blob/Junjie/anomaly-primitives/anomaly_primitives/DuplicationValidation.py']},
"algorithm_types": [metadata_base.PrimitiveAlgorithmType.BK_FILTER,],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
"id": "b2bfadc5-dbca-482c-b188-8585e5f245c4",
"source": {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu',
},
"hyperparams_to_tune": ['low', 'high', 'K'], "hyperparams_to_tune": ['low', 'high', 'K'],
"version": "0.0.1", "version": "0.0.1",
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'BKFilterPrimitive')),
}) })






+ 7
- 12
tods/feature_analysis/DiscreteCosineTransform.py View File

@@ -7,6 +7,7 @@ from d3m import container, utils
from d3m.base import utils as base_utils from d3m.base import utils as base_utils
from d3m.metadata import base as metadata_base, hyperparams from d3m.metadata import base as metadata_base, hyperparams
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
import uuid


import logging import logging
import math import math
@@ -212,27 +213,21 @@ class DiscreteCosineTransformPrimitive(transformer.TransformerPrimitiveBase[Inpu


""" """


__author__ = "Data Lab"
metadata = metadata_base.PrimitiveMetadata(
{
"__author__ " : "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata({
"__author__ " : "DATA Lab @ Texas A&M University",
'name': "Discrete Cosine Transform", 'name': "Discrete Cosine Transform",
'python_path': 'd3m.primitives.tods.feature_analysis.discrete_cosine_transform', 'python_path': 'd3m.primitives.tods.feature_analysis.discrete_cosine_transform',
'source': { 'source': {
'name': 'DATA Lab at Texas A&M University', 'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu', 'contact': 'mailto:khlai037@tamu.edu',
'uris': [
'https://gitlab.com/lhenry15/tods.git',
'https://gitlab.com/lhenry15/tods/-/blob/purav/anomaly-primitives/anomaly_primitives/DiscreteCosineTransform.py',
],
}, },
'hyperparameters_to_tune':['n','norm','axis','type_'],
'version': '0.0.1',
'algorithm_types': [ 'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DISCRETE_COSINE_TRANSFORM,
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
], ],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION, 'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': '584fa7d5-39cc-4cf8-8d5b-5f3a2648f767',
'hyperparameters_to_tune':['n','norm','axis','type_'],
'version': '0.0.1',
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'DiscreteCosineTransformPrimitive')),
}, },
) )




+ 9
- 15
tods/feature_analysis/FastFourierTransform.py View File

@@ -7,6 +7,7 @@ from d3m import container, utils
from d3m.base import utils as base_utils from d3m.base import utils as base_utils
from d3m.metadata import base as metadata_base, hyperparams from d3m.metadata import base as metadata_base, hyperparams
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
import uuid


import logging import logging
from cmath import polar from cmath import polar
@@ -204,29 +205,22 @@ class FastFourierTransformPrimitive(transformer.TransformerPrimitiveBase[Inputs,
Decides what semantic type to attach to generated attributes' Decides what semantic type to attach to generated attributes'
""" """
__author__ = "Data Lab"
metadata = metadata_base.PrimitiveMetadata(
{
'__author__' : "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata({
'__author__' : "DATA Lab @ Texas A&M University",
'name': "Fast Fourier Transform", 'name': "Fast Fourier Transform",
'python_path': 'd3m.primitives.tods.feature_analysis.fast_fourier_transform', 'python_path': 'd3m.primitives.tods.feature_analysis.fast_fourier_transform',
'source': { 'source': {
'name': 'DATA Lab at Texas A&M University',
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu', 'contact': 'mailto:khlai037@tamu.edu',
'uris': [
'https://gitlab.com/lhenry15/tods.git',
'https://gitlab.com/lhenry15/tods/-/blob/purav/anomaly-primitives/anomaly_primitives/FastFourierTransform.py',
],
}, },
'hyperparameters_to_tune':['n','norm','axis'],
'version': '0.0.1',
'algorithm_types': [ 'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.FAST_FOURIER_TRANSFORM,
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
], ],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION, 'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': '7bd269bc-de7e-47b8-8d6c-0bd46594d3cb',
'hyperparameters_to_tune':['n','norm','axis'],
'version': '0.0.1',
},
)
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'FastFourierTransformPrimitive')),
})


def __init__(self, *, hyperparams: Hyperparams) -> None: def __init__(self, *, hyperparams: Hyperparams) -> None:
super().__init__(hyperparams=hyperparams) super().__init__(hyperparams=hyperparams)


+ 11
- 6
tods/feature_analysis/HPFilter.py View File

@@ -7,6 +7,7 @@ import sklearn
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -131,17 +132,21 @@ class HPFilterPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outputs, Hy
Decides what semantic type to attach to generated attributes' Decides what semantic type to attach to generated attributes'
""" """


__author__: "DATA Lab at Texas A&M University"
metadata = metadata_base.PrimitiveMetadata({ metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab at Texas A&M University",
"name": "Hodrick-Prescott filter Primitive", "name": "Hodrick-Prescott filter Primitive",
"python_path": "d3m.primitives.tods.feature_analysis.hp_filter", "python_path": "d3m.primitives.tods.feature_analysis.hp_filter",
"source": {'name': 'DATA Lab at Texas A&M University', 'contact': 'mailto:khlai037@tamu.edu',
'uris': ['https://gitlab.com/lhenry15/tods.git', 'https://gitlab.com/lhenry15/tods/-/blob/Junjie/anomaly-primitives/anomaly_primitives/DuplicationValidation.py']},
"algorithm_types": [metadata_base.PrimitiveAlgorithmType.HP_FILTER,],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
"id": "3af1be06-e45e-4ead-8523-4373264598e4",
"source": {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu',
},
"hyperparams_to_tune": ['lamb'], "hyperparams_to_tune": ['lamb'],
"version": "0.0.1", "version": "0.0.1",
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'HPFilterPrimitive')),
}) })






+ 16
- 22
tods/feature_analysis/NonNegativeMatrixFactorization.py View File

@@ -7,6 +7,7 @@ from d3m.primitive_interfaces.base import CallResult, DockerContainer
from typing import cast, Dict, List, Union, Sequence, Optional, Tuple from typing import cast, Dict, List, Union, Sequence, Optional, Tuple
from collections import OrderedDict from collections import OrderedDict
from scipy import sparse from scipy import sparse
import uuid


import nimfa import nimfa
import pandas as pd import pandas as pd
@@ -266,29 +267,22 @@ class NonNegativeMatrixFactorizationPrimitive(transformer.TransformerPrimitiveBa






__author__ = "Data Lab"
metadata = metadata_base.PrimitiveMetadata(
{
'__author__' : "DATA Lab at Texas A&M University",
'name': "Fast Fourier Transform",
'python_path': 'd3m.primitives.tods.feature_analysis.non_negative_matrix_factorization',
'source': {
'name': 'DATA Lab at Texas A&M University',
metadata = metadata_base.PrimitiveMetadata({
'__author__' : "DATA Lab @ Texas A&M University",
'name': "Fast Fourier Transform",
'python_path': 'd3m.primitives.tods.feature_analysis.non_negative_matrix_factorization',
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu', 'contact': 'mailto:khlai037@tamu.edu',
'uris': [
'https://gitlab.com/lhenry15/tods.git',
'https://gitlab.com/lhenry15/tods/-/blob/purav/anomaly-primitives/anomaly_primitives/NonNegativeMatrixFactorization.py',
],
},
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.NON_NEGATIVE_MATRIX_FACTORIZATION,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': 'c7259da6-7ce6-42ad-83c6-15238679f5fa',
'hyperparameters_to_tune':['rank','update','objective','max_iter','learning_rate'],
'version': '0.0.1',
},
)
},
'hyperparameters_to_tune':['rank','update','objective','max_iter','learning_rate'],
'version': '0.0.1',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'NonNegativeMatrixFactorizationPrimitive')),
})


def __init__(self, *, hyperparams: Hyperparams) -> None: def __init__(self, *, hyperparams: Hyperparams) -> None:
super().__init__(hyperparams=hyperparams) super().__init__(hyperparams=hyperparams)


+ 15
- 10
tods/feature_analysis/SKTruncatedSVD.py View File

@@ -7,6 +7,7 @@ import sklearn
import numpy import numpy
import typing import typing
import time import time
import uuid


# Custom import commands if any # Custom import commands if any
from sklearn.decomposition.truncated_svd import TruncatedSVD from sklearn.decomposition.truncated_svd import TruncatedSVD
@@ -156,17 +157,21 @@ class SKTruncatedSVDPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs,
Decides what semantic type to attach to generated attributes' Decides what semantic type to attach to generated attributes'
""" """


__author__: "DATA Lab at Texas A&M University"
metadata = metadata_base.PrimitiveMetadata({ metadata = metadata_base.PrimitiveMetadata({
"name": "Truncated SVD",
"python_path": "d3m.primitives.tods.feature_analysis.truncated_svd",
"source": {'name': 'DATA Lab at Texas A&M University', 'contact': 'mailto:khlai037@tamu.edu',
'uris': ['https://gitlab.com/lhenry15/tods.git', 'https://gitlab.com/lhenry15/tods/-/blob/Junjie/anomaly-primitives/anomaly_primitives/SKTruncatedSVD.py']},
"algorithm_types": [metadata_base.PrimitiveAlgorithmType.SINGULAR_VALUE_DECOMPOSITION, ],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
"id": "9231fde3-7322-3c41-b4cf-d00a93558c44",
"hyperparams_to_tune": ['n_components', 'algorithm', 'use_columns', 'exclude_columns', 'return_result', 'use_semantic_types', 'add_index_columns', 'error_on_no_input', 'return_semantic_type'],
"version": "0.0.1",
"__author__": "DATA Lab at Texas A&M University",
"name": "Truncated SVD",
"python_path": "d3m.primitives.tods.feature_analysis.truncated_svd",
"source": {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu',
},
"hyperparams_to_tune": ['n_components', 'algorithm', 'use_columns', 'exclude_columns', 'return_result', 'use_semantic_types', 'add_index_columns', 'error_on_no_input', 'return_semantic_type'],
"version": "0.0.1",
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'SKTruncatedSVDPrimitive')),
}) })


def __init__(self, *, def __init__(self, *,


+ 19
- 30
tods/feature_analysis/SpectralResidualTransform.py View File

@@ -9,6 +9,7 @@ from numpy import ndarray
from collections import OrderedDict from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
import uuid


import numpy import numpy
import typing import typing
@@ -90,36 +91,24 @@ class SpectralResidualTransformPrimitive(transformer.TransformerPrimitiveBase[In
""" """
Primitive to find Spectral Residual Transform of time series Primitive to find Spectral Residual Transform of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '88dda04b-090b-49a5-8035-279eb3be9cd9',
'version': '0.1.0',
'name': 'Time Series Spectral Residual',
'python_path': 'd3m.primitives.tods.feature_analysis.spectral_residual_transform',
'keywords': ['Time Series','FFT'],
"hyperparams_to_tune": ['avg_filter_dimension'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/SpectralResidualTransform.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Spectral Residual',
'python_path': 'd3m.primitives.tods.feature_analysis.spectral_residual_transform',
'keywords': ['Time Series','FFT'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'

},
"hyperparams_to_tune": ['avg_filter_dimension'],
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'SpectralResidualTransformPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 29
tods/feature_analysis/StatisticalAbsEnergy.py View File

@@ -9,6 +9,7 @@ from numpy import ndarray
from collections import OrderedDict from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
import uuid


import numpy import numpy
import typing import typing
@@ -92,35 +93,24 @@ class StatisticalAbsEnergyPrimitive(transformer.TransformerPrimitiveBase[Inputs,
""" """


__author__ = "DATA Lab at Texas A&M University", __author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '73299ffe-d8bb-43c6-a6cc-9261f5e17a5e',
'version': '0.1.0',
'name': 'Time Series Statistical Abs Energy',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_abs_energy',
'keywords': ['Time Series','AbsEnergy'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalAbsEnergy.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Statistical Abs Energy',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_abs_energy',
'keywords': ['Time Series','AbsEnergy'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
"hyperparams_to_tune": ['window_size'],
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalAbsEnergyPrimitive')),

})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 30
tods/feature_analysis/StatisticalAbsSum.py View File

@@ -9,6 +9,7 @@ from numpy import ndarray
from collections import OrderedDict from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
import uuid


import numpy import numpy
import typing import typing
@@ -90,36 +91,23 @@ class StatisticalAbsSumPrimitive(transformer.TransformerPrimitiveBase[Inputs, Ou
""" """
Primitive to find abs_sum of time series Primitive to find abs_sum of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'fbc10e6f-d75b-4815-b4c8-5ad4f2f577db',
'version': '0.1.0',
'name': 'Time Series Absolute Sum',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_abs_sum',
'keywords': ['Time Series','AbsSum'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalAbsSum.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Absolute Sum',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_abs_sum',
'keywords': ['Time Series','AbsSum'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
"hyperparams_to_tune": ['window_size'],
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalAbsSumPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 31
tods/feature_analysis/StatisticalGmean.py View File

@@ -10,7 +10,7 @@ from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
from scipy import stats from scipy import stats
import uuid
import numpy import numpy
import typing import typing
import time import time
@@ -93,36 +93,23 @@ class StatisticalGmeanPrimitive(transformer.TransformerPrimitiveBase[Inputs, Out
Primitive to find gmean of time series . Primitive to find gmean of time series .
Will only take positive values as inputs . Will only take positive values as inputs .
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '6be88a7d-e72d-45c6-bd3b-3191d4eff623',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_g_mean',
'keywords': ['Time Series','Gmean'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalGmean.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_g_mean',
'keywords': ['Time Series','Gmean'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
"hyperparams_to_tune": ['window_size'],
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalGmeanPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 29
tods/feature_analysis/StatisticalHmean.py View File

@@ -10,6 +10,7 @@ from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
from scipy import stats from scipy import stats
import uuid


import numpy import numpy
import typing import typing
@@ -93,35 +94,24 @@ class StatisticalHmeanPrimitive(transformer.TransformerPrimitiveBase[Inputs, Out
Harmonic mean only defined if all elements greater than or equal to zero Harmonic mean only defined if all elements greater than or equal to zero
""" """
__author__ = "DATA Lab at Texas A&M University", __author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '7c4bf669-26f4-4756-8e00-c3e5e89fa43c',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_h_mean',
'keywords': ['Time Series','Hmean'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalHmean.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_h_mean',
'keywords': ['Time Series','Hmean'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'

},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalHmeanPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 30
tods/feature_analysis/StatisticalKurtosis.py View File

@@ -10,6 +10,7 @@ from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
from scipy import stats from scipy import stats
import uuid


import numpy import numpy
import typing import typing
@@ -91,36 +92,23 @@ class StatisticalKurtosisPrimitive(transformer.TransformerPrimitiveBase[Inputs,
""" """
Primitive to find kurtosis of time series Primitive to find kurtosis of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'c86af521-05b6-4f7c-a7b9-929318d944fc',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_kurtosis',
'keywords': ['Time Series','Kurtosis'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalKurtosis.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_kurtosis',
'keywords': ['Time Series','Kurtosis'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalKurtosisPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 29
tods/feature_analysis/StatisticalMaximum.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -91,35 +92,23 @@ class StatisticalMaximumPrimitive(transformer.TransformerPrimitiveBase[Inputs, O
Primitive to find maximum of time series Primitive to find maximum of time series
""" """
__author__ = "DATA Lab at Texas A&M University", __author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '3b448057-ac26-4f1b-96b6-141782f16a54',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_maximum',
'keywords': ['Time Series','Maximum'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMaximum.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_maximum',
'keywords': ['Time Series','Maximum'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
"hyperparams_to_tune": ['window_size'],
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMaximumPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalMean.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,24 @@ class StatisticalMeanPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outp
""" """
Primitive to find mean of time series Primitive to find mean of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'eaff2f35-978c-4530-a12e-061a5f0beacd',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean',
'keywords': ['Time Series','Mean'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMean.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean',
'keywords': ['Time Series','Mean'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMeanPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 30
tods/feature_analysis/StatisticalMeanAbs.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,23 @@ class StatisticalMeanAbsPrimitive(transformer.TransformerPrimitiveBase[Inputs, O
""" """
Primitive to find mean_abs of time series Primitive to find mean_abs of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'c397f0b2-45da-4263-8cca-b4e1a9502918',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_abs',
'keywords': ['Time Series','MeanAbs'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMeanAbs.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_abs',
'keywords': ['Time Series','MeanAbs'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMeanAbsPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalMeanAbsTemporalDerivative.py View File

@@ -9,6 +9,7 @@ from numpy import ndarray
from collections import OrderedDict from collections import OrderedDict
from scipy import sparse from scipy import sparse
import os import os
import uuid


import numpy import numpy
import typing import typing
@@ -90,36 +91,24 @@ class StatisticalMeanAbsTemporalDerivativePrimitive(transformer.TransformerPrimi
""" """
Primitive to find mean_abs_temporal_derivative of time series Primitive to find mean_abs_temporal_derivative of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'eb571238-6229-4fe4-94b3-684f043e4dbf',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_abs_temporal_derivative',
'keywords': ['Time Series','MeanAbsTemporalDerivative'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMeanAbsTemporalDerivative.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_abs_temporal_derivative',
'keywords': ['Time Series','MeanAbsTemporalDerivative'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMeanAbsTemporalDerivativePrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalMeanTemporalDerivative.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,24 @@ class StatisticalMeanTemporalDerivativePrimitive(transformer.TransformerPrimitiv
""" """
Primitive to find mean_temporal_derivative of time series Primitive to find mean_temporal_derivative of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'bc051fbb-836b-414e-ad3e-5bf29c9f78f1',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_temporal_derivative',
'keywords': ['Time Series','MeanTemporalDerivative'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMeanTemporalDerivative.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_mean_temporal_derivative',
'keywords': ['Time Series','MeanTemporalDerivative'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMeanTemporalDerivativePrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalMedian.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,24 @@ class StatisticalMedianPrimitive(transformer.TransformerPrimitiveBase[Inputs, Ou
""" """
Primitive to find median of time series Primitive to find median of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '9f05a450-c1f0-49f6-971b-dcc3789174d0',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_median',
'keywords': ['Time Series','Median'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMedian.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_median',
'keywords': ['Time Series','Median'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
"hyperparams_to_tune": ['window_size'],
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMedianPrimitive')),

})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalMedianAbsoluteDeviation.py View File

@@ -14,6 +14,7 @@ from scipy import stats
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -91,36 +92,24 @@ class StatisticalMedianAbsoluteDeviationPrimitive(transformer.TransformerPrimiti
""" """
Primitive to find median_absolute_deviation of time series Primitive to find median_absolute_deviation of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '36e7d739-72c3-4e6e-91b8-b2b64cbe4e12',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_median_abs_deviation',
'keywords': ['Time Series','MedianAbsoluteDeviation'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMedianAbsoluteDeviation.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_median_abs_deviation',
'keywords': ['Time Series','MedianAbsoluteDeviation'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMedianAbsoluteDeviationPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalMinimum.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,24 @@ class StatisticalMinimumPrimitive(transformer.TransformerPrimitiveBase[Inputs, O
""" """
Primitive to find minimum of time series Primitive to find minimum of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '255955d0-1d64-433b-b9f0-e2a1b679be45',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_minimum',
'keywords': ['Time Series','Minimum'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalMinimum.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_minimum',
'keywords': ['Time Series','Minimum'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalMinimumPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalSkew.py View File

@@ -14,6 +14,7 @@ from scipy import stats
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -91,36 +92,24 @@ class StatisticalSkewPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outp
""" """
Primitive to find skew of time series Primitive to find skew of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'cd154af5-8f98-480a-8a72-6a22365c3c6f',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_skew',
'keywords': ['Time Series','Skew'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalSkew.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_skew',
'keywords': ['Time Series','Skew'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalSkewPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalStd.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,24 @@ class StatisticalStdPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outpu
""" """
Primitive to find std of time series Primitive to find std of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '652fc98a-8bd9-45a2-8005-dc781bf0c136',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_std',
'keywords': ['Time Series','Std'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalStd.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_std',
'keywords': ['Time Series','Std'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalStdPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 30
tods/feature_analysis/StatisticalVar.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,23 @@ class StatisticalVarPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outpu
""" """
Primitive to find var of time series Primitive to find var of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '9b237f3f-c638-44f4-adb1-f3f24a173711',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_var',
'keywords': ['Time Series','Var'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalVar.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_var',
'keywords': ['Time Series','Var'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalVarPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 20
- 30
tods/feature_analysis/StatisticalVariation.py View File

@@ -14,6 +14,7 @@ from scipy import stats
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -91,36 +92,25 @@ class StatisticalVariationPrimitive(transformer.TransformerPrimitiveBase[Inputs,
""" """
Primitive to find variation of time series Primitive to find variation of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'ea6e852f-164b-4245-b5e6-02fde55c5491',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_variation',
'keywords': ['Time Series','Variation'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalVariation.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_variation',
'keywords': ['Time Series','Variation'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalVariationPrimitive')),

})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalVecSum.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -90,36 +91,24 @@ class StatisticalVecSumPrimitive(transformer.TransformerPrimitiveBase[Inputs, Ou
""" """
Primitive to find vec_sum of time series Primitive to find vec_sum of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'a5ff2fc8-657e-4c4f-8a4e-6949dd37bf9c',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_vec_sum',
'keywords': ['Time Series','VecSum'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalVecSum.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_vec_sum',
'keywords': ['Time Series','VecSum'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalVecSumPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 19
- 30
tods/feature_analysis/StatisticalWillisonAmplitude.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -94,36 +95,24 @@ class StatisticalWillisonAmplitudePrimitive(transformer.TransformerPrimitiveBase
""" """
Primitive to find willison amplitude of time series Primitive to find willison amplitude of time series
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': 'f1dee9fb-7e3b-499d-a559-7979fa4a2e1c',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_willison_amplitude',
'keywords': ['Time Series','WillisonAmplitude'],
"hyperparams_to_tune": ['window_size'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalWillisonAmplitude.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_willison_amplitude',
'keywords': ['Time Series','WillisonAmplitude'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
"hyperparams_to_tune": ['window_size'],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalWillisonAmplitudePrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 18
- 29
tods/feature_analysis/StatisticalZeroCrossing.py View File

@@ -13,6 +13,7 @@ import os
import numpy import numpy
import typing import typing
import time import time
import uuid


from d3m import container from d3m import container
from d3m.primitive_interfaces import base, transformer from d3m.primitive_interfaces import base, transformer
@@ -86,35 +87,23 @@ class StatisticalZeroCrossingPrimitive(transformer.TransformerPrimitiveBase[Inpu
""" """
Primitive to find zero_crossing of time series. A column indicating zero crossing on ith row . 1 indicates crossing 0 is for normal Primitive to find zero_crossing of time series. A column indicating zero crossing on ith row . 1 indicates crossing 0 is for normal
""" """
__author__ = "DATA Lab at Texas A&M University",
metadata = metadata_base.PrimitiveMetadata(
{
'id': '1064c78f-37e2-45a1-94a3-401a6726c220',
'version': '0.1.0',
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_zero_crossing',
'keywords': ['Time Series','ZeroCrossing'],
'source': {
'name': 'DATA Lab at Texas A&M University',
'uris': ['https://gitlab.com/lhenry15/tods.git','https://gitlab.com/lhenry15/tods/-/blob/devesh/tods/feature_analysis/StatisticalZeroCrossing.py'],
'contact': 'mailto:khlai037@tamu.edu'

},
'installation': [
{'type': metadata_base.PrimitiveInstallationType.PIP,
'package_uri': 'git+https://gitlab.com/lhenry15/tods.git@{git_commit}#egg=TODS'.format(
git_commit=d3m_utils.current_git_commit(os.path.dirname(__file__)),
),
}

],
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.DATA_PROFILING,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,

}
)

metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
'name': 'Time Series Decompostional',
'python_path': 'd3m.primitives.tods.feature_analysis.statistical_zero_crossing',
'keywords': ['Time Series','ZeroCrossing'],
'source': {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu'
},
'version': '0.1.0',
'algorithm_types': [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'StatisticalZeroCrossingPrimitive')),
})


def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]: def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
""" """


+ 15
- 10
tods/feature_analysis/TRMF.py View File

@@ -7,6 +7,7 @@ import sklearn
import numpy as np import numpy as np
import typing import typing
import time import time
import uuid


# Custom import commands if any # Custom import commands if any
from sklearn.decomposition.truncated_svd import TruncatedSVD from sklearn.decomposition.truncated_svd import TruncatedSVD
@@ -222,17 +223,21 @@ class TRMFPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outputs, Hyperp
Which can be found there: http://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf Which can be found there: http://www.cs.utexas.edu/~rofuyu/papers/tr-mf-nips.pdf
""" """


__author__: "DATA Lab at Texas A&M University"
metadata = metadata_base.PrimitiveMetadata({ metadata = metadata_base.PrimitiveMetadata({
"name": "Temporal Regularized Matrix Factorization Primitive",
"python_path": "d3m.primitives.tods.feature_analysis.trmf",
"source": {'name': 'DATA Lab at Texas A&M University', 'contact': 'mailto:khlai037@tamu.edu',
'uris': ['https://gitlab.com/lhenry15/tods.git', 'https://gitlab.com/lhenry15/tods/-/blob/Junjie/anomaly-primitives/anomaly_primitives/TRMF.py']},
"algorithm_types": [metadata_base.PrimitiveAlgorithmType.TEMPORAL_REGULARIZED_MATRIX_FACTORIZATION, ],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
"id": "d6be6941-61d0-4cbd-85ef-a10c86aa40b1",
"hyperparams_to_tune": ['lags', 'K', 'lambda_f', 'lambda_x', 'lambda_w', 'alpha', 'eta', 'max_iter', 'F_step', 'X_step', 'W_step'],
"version": "0.0.1",
"__author__": "DATA Lab @ Texas A&M University",
"name": "Temporal Regularized Matrix Factorization Primitive",
"python_path": "d3m.primitives.tods.feature_analysis.trmf",
"source": {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu',
},
"version": "0.0.1",
"hyperparams_to_tune": ['lags', 'K', 'lambda_f', 'lambda_x', 'lambda_w', 'alpha', 'eta', 'max_iter', 'F_step', 'X_step', 'W_step'],
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'TRMFPrimitive')),
}) })




+ 15
- 13
tods/feature_analysis/WaveletTransform.py View File

@@ -174,20 +174,22 @@ class WaveletTransformPrimitive(transformer.TransformerPrimitiveBase[Inputs, Out
None None
""" """


__author__ = "DATALAB @Taxes A&M University"
metadata = metadata_base.PrimitiveMetadata(
{
"name": "Wavelet_transformation",
"python_path": "d3m.primitives.tods.feature_analysis.wavelet_transform",
"source": {'name': "DATALAB @Taxes A&M University", 'contact': 'mailto:khlai037@tamu.edu',
'uris': ['https://gitlab.com/lhenry15/tods.git']},
"algorithm_types": [metadata_base.PrimitiveAlgorithmType.FREQUENCY_TRANSFORM, ],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_EXTRACTION,
"version": "0.0.1",
"hyperparams_to_tune": ['wavelet', 'mode', 'axis', 'level'],
"id": str(uuid.uuid3(uuid.NAMESPACE_DNS, 'WaveletTransformer')),
metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
"name": "Wavelet_transformation",
"python_path": "d3m.primitives.tods.feature_analysis.wavelet_transform",
"source": {
'name': "DATA Lab @ Taxes A&M University",
'contact': 'mailto:khlai037@tamu.edu',
}, },
)
"version": "0.0.1",
"hyperparams_to_tune": ['wavelet', 'mode', 'axis', 'level'],
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.FEATURE_EXTRACTION,
"id": str(uuid.uuid3(uuid.NAMESPACE_DNS, 'WaveletTransformer')),
})


def __init__(self, *, hyperparams: Hyperparams) -> None: def __init__(self, *, hyperparams: Hyperparams) -> None:
super().__init__(hyperparams=hyperparams) # , random_seed=random_seed, docker_containers=docker_containers) super().__init__(hyperparams=hyperparams) # , random_seed=random_seed, docker_containers=docker_containers)


+ 14
- 14
tods/timeseries_processing/HoltSmoothing.py View File

@@ -112,20 +112,20 @@ class HoltSmoothingPrimitive(UnsupervisedLearnerPrimitiveBase[Inputs, Outputs, P
""" """
metadata = metadata_base.PrimitiveMetadata({ metadata = metadata_base.PrimitiveMetadata({
"__author__": "DATA Lab @ Texas A&M University",
"name": "statsmodels.preprocessing.HoltSmoothing",
"python_path": "d3m.primitives.tods.timeseries_processing.transformation.holt_smoothing",
"source": {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu',
},
"version": "0.0.1",
"hyperparams_to_tune": ['endog','use_columns'],
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.DATA_PREPROCESSING,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'HoltSmoothingPrimitive')),
"__author__": "DATA Lab @ Texas A&M University",
"name": "statsmodels.preprocessing.HoltSmoothing",
"python_path": "d3m.primitives.tods.timeseries_processing.transformation.holt_smoothing",
"source": {
'name': 'DATA Lab @ Texas A&M University',
'contact': 'mailto:khlai037@tamu.edu',
},
"version": "0.0.1",
"hyperparams_to_tune": ['endog','use_columns'],
"algorithm_types": [
metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
],
"primitive_family": metadata_base.PrimitiveFamily.DATA_PREPROCESSING,
'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'HoltSmoothingPrimitive')),
}) })


def __init__(self, *, def __init__(self, *,


Loading…
Cancel
Save