diff --git a/tods/tods_skinterface/primitiveSKI/Base_skinterface.py b/tods/tods_skinterface/primitiveSKI/Base_skinterface.py index 76ef244..55ab814 100644 --- a/tods/tods_skinterface/primitiveSKI/Base_skinterface.py +++ b/tods/tods_skinterface/primitiveSKI/Base_skinterface.py @@ -25,32 +25,33 @@ class BaseSKI(): self.fit_available = False self.predict_available = False self.produce_available = False - #print(hyperparams) + + # print(hyperparams) def transform(self, X): #transform the ndarray to d3m dataframe, select columns to use - # if self.use_columns==(): - # self.use_columns = [iter for iter in range(len(X))] - # else: - # pass - # print(self.use_columns) - - use_columns = [iter for iter in range(len(X))] - inputs = {} - for i in use_columns: - inputs['col_'+str(i)] = list(X[i]) - inputs = container.DataFrame(inputs, columns=list(inputs.keys()), generate_metadata=True) - return inputs + column_name = [str(col_index) for col_index in range(X.shape[1])] + return container.DataFrame(X, columns=column_name, generate_metadata=True) + + # use_columns = [iter for iter in range(len(X))] + # inputs = {} + # for i in use_columns: + # inputs['col_'+str(i)] = list(X[i]) + # inputs = container.DataFrame(inputs, columns=list(inputs.keys()), generate_metadata=True) + # return inputs def set_training_data(self, data): return self.primitive.set_training_data(inputs=data) def fit(self, data): + # print(data) if not self.fit_available: raise AttributeError('type object ' + self.__class__.__name__ + ' has no attribute \'fit\'') data = self.transform(data) + # print(data) self.set_training_data(data) + return self.primitive.fit() def predict(self, data): @@ -102,4 +103,4 @@ if __name__ == '__main__': 'use_columns': use_columns, 'return_result': return_result, """ -#use_columns=(-1,), contamination=0.1, return_result='append' \ No newline at end of file +#use_columns=(-1,), contamination=0.1, return_result='append' diff --git a/tods/tods_skinterface/primitiveSKI/detection_algorithm/Telemanom_skinterface.py b/tods/tods_skinterface/primitiveSKI/detection_algorithm/Telemanom_skinterface.py index 3d9f46f..c6236bc 100644 --- a/tods/tods_skinterface/primitiveSKI/detection_algorithm/Telemanom_skinterface.py +++ b/tods/tods_skinterface/primitiveSKI/detection_algorithm/Telemanom_skinterface.py @@ -8,3 +8,4 @@ class TelemanomSKI(BaseSKI): self.fit_available = True self.predict_available = True self.produce_available = False + diff --git a/tods/tods_skinterface/test/detection_algorithm/Telemanom_skitest.py b/tods/tods_skinterface/test/detection_algorithm/Telemanom_skitest.py index 3dc5de7..5942155 100644 --- a/tods/tods_skinterface/test/detection_algorithm/Telemanom_skitest.py +++ b/tods/tods_skinterface/test/detection_algorithm/Telemanom_skitest.py @@ -1,10 +1,10 @@ import numpy as np from tods.tods_skinterface.primitiveSKI.detection_algorithm.Telemanom_skinterface import TelemanomSKI -X_train = np.array([[3., 4., 8., 16, 18, 13., 22., 36., 59., 128, 62, 67, 78, 100]]) -X_test = np.array([[3., 4., 8.6, 13.4, 22.5, 17, 19.2, 36.1, 127, -23, 59.2]]) +X_train = np.random.rand(9, 3) +X_test = np.random.rand(9, 3) -transformer = TelemanomSKI() +transformer = TelemanomSKI(l_s= 2, n_predictions= 1) transformer.fit(X_train) prediction_labels = transformer.predict(X_test) prediction_score = transformer.predict_score(X_test) @@ -12,3 +12,5 @@ prediction_score = transformer.predict_score(X_test) print("Primitive: ", transformer.primitive) print("Prediction Labels\n", prediction_labels) print("Prediction Score\n", prediction_score) + +