Browse Source

remove old sklearn_interface

master
lhenry15 4 years ago
parent
commit
6809fd18dc
2 changed files with 0 additions and 65 deletions
  1. +0
    -14
      examples/sklearn_interface/ABOD_skitest.py
  2. +0
    -51
      examples/sklearn_interface/system_KNN.py

+ 0
- 14
examples/sklearn_interface/ABOD_skitest.py View File

@@ -1,14 +0,0 @@
import numpy as np
from tods.tods_skinterface.primitiveSKI.detection_algorithm.ABOD_skinterface import ABODSKI

X_train = np.array([[3., 4., 8., 16, 18, 13., 22., 36., 59., 128, 62, 67, 78, 100]])
X_test = np.array([[3., 4., 8.6, 13.4, 22.5, 17, 19.2, 36.1, 127, -23, 59.2]])

transformer = ABODSKI()
transformer.fit(X_train)
prediction_labels = transformer.predict(X_test)
prediction_score = transformer.predict_score(X_test)

print("Primitive: ", transformer.primitive)
print("Prediction Labels\n", prediction_labels)
print("Prediction Score\n", prediction_score)

+ 0
- 51
examples/sklearn_interface/system_KNN.py View File

@@ -1,51 +0,0 @@
import numpy as np

from tods.sk_interface.feature_analysis.StatisticalMaximum_skinterface import StatisticalMaximumSKI
from tods.sk_interface.detection_algorithm.KNN_skinterface import KNNSKI
from tods.sk_interface.data_ensemble.Ensemble_skinterface import EnsembleSKI
from tods.sk_interface.utils.data import generate_3D_data, load_sys_data, generate_sys_feature

# Generate 3D data (n, T, d), n: system number, T: time, d: dimension

# n_sys = 5
# X_train, y_train, X_test, y_test = generate_3D_data(n_sys=n_sys,
# n_train=1000,
# n_test=1000,
# n_features=3,
# contamination=0.1)

X_train, y_train, sys_info_train = load_sys_data('../../datasets/anomaly/system_wise/sample/train.csv',
'../../datasets/anomaly/system_wise/sample/systems')
X_test, y_test, sys_info_test = load_sys_data('../../datasets/anomaly/system_wise/sample/train.csv',
'../../datasets/anomaly/system_wise/sample/systems')
n_sys = sys_info_train['sys_num']

# feature analysis algorithms
stmax = StatisticalMaximumSKI(system_num=n_sys)

# OD algorithms
detection_module = KNNSKI(contamination=0.1, system_num=n_sys)

# ensemble model
ensemble_module = EnsembleSKI()

# Fit the feature analysis algorithms
X_train = stmax.produce(X_train)
X_test = stmax.produce(X_test)

# Fit the detector
detection_module.fit(X_train)
sys_ts_score = detection_module.predict_score(X_test) # shape (n, T, 1)

# generate sys_feature based on the time-series anomaly score
sys_feature = generate_sys_feature(sys_ts_score) # shape (T, n)

print(sys_feature.shape)
print(sys_feature.ndim)

# Ensemble the time series outlier socre for each system
ensemble_module.fit(sys_feature)
sys_score = ensemble_module.predict(sys_feature)

print(sys_score)


Loading…
Cancel
Save