|
|
@@ -8,12 +8,15 @@ import numpy as np |
|
|
|
import pandas as pd |
|
|
|
from d3m.container import DataFrame as d3m_dataframe |
|
|
|
from scipy.stats import kstest, shapiro |
|
|
|
import os |
|
|
|
|
|
|
|
this_path = os.path.dirname(os.path.realpath(__file__)) |
|
|
|
|
|
|
|
class SKQuantileTransformerTestCase(unittest.TestCase): |
|
|
|
def test_basic(self): |
|
|
|
self.maxDiff=None |
|
|
|
|
|
|
|
dataset_fname = '../../datasets/anomaly/kpi/TRAIN/dataset_TRAIN/tables/learningData.csv' |
|
|
|
#dataset = pd.DataFrame([[0,2],[1,4],[2,6],[3,8],[4,10],[5,12],[6,14]]) |
|
|
|
dataset_fname = os.path.join(this_path, '../../datasets/anomaly/kpi/TRAIN/dataset_TRAIN/tables/learningData.csv') |
|
|
|
dataset = pd.read_csv(dataset_fname) |
|
|
|
# dataset = np.random.rand(1000) |
|
|
|
main = d3m_dataframe(dataset, generate_metadata=True) |
|
|
@@ -25,7 +28,7 @@ class SKQuantileTransformerTestCase(unittest.TestCase): |
|
|
|
primitive.fit() |
|
|
|
new_main = primitive.produce(inputs=main).value |
|
|
|
|
|
|
|
test_data = new_main.values[:, 2] |
|
|
|
test_data = new_main.values[:, 1] |
|
|
|
# hist_data = new_main.values |
|
|
|
std_normal_samples = np.random.randn(test_data.__len__()) |
|
|
|
|
|
|
@@ -45,9 +48,6 @@ class SKQuantileTransformerTestCase(unittest.TestCase): |
|
|
|
# print(mean_mse, std_mse) |
|
|
|
self.assertAlmostEqual(mean_mse.__float__(), 0., delta=1e-5) |
|
|
|
self.assertAlmostEqual(std_mse.__float__(), 0., delta=1e-5) |
|
|
|
# |
|
|
|
# print(main.metadata.to_internal_simple_structure()) |
|
|
|
# print(new_main.metadata.to_internal_simple_structure()) |
|
|
|
|
|
|
|
self.assertEqual(utils.to_json_structure(new_main.metadata.to_internal_simple_structure()), [{ |
|
|
|
'selector': [], |
|
|
|