|
@@ -191,19 +191,19 @@ def _generate_pipline(combinations): # pragma: no cover |
|
|
|
|
|
|
|
|
# The first three steps are fixed |
|
|
# The first three steps are fixed |
|
|
# Step 0: dataset_to_dataframe |
|
|
# Step 0: dataset_to_dataframe |
|
|
step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.dataset_to_dataframe.Common')) |
|
|
|
|
|
|
|
|
step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')) |
|
|
step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') |
|
|
step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') |
|
|
step_0.add_output('produce') |
|
|
step_0.add_output('produce') |
|
|
pipeline_description.add_step(step_0) |
|
|
pipeline_description.add_step(step_0) |
|
|
|
|
|
|
|
|
# Step 1: column_parser |
|
|
|
|
|
step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.column_parser.Common')) |
|
|
|
|
|
|
|
|
# Step 1: column_parsr |
|
|
|
|
|
step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser')) |
|
|
step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') |
|
|
step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') |
|
|
step_1.add_output('produce') |
|
|
step_1.add_output('produce') |
|
|
pipeline_description.add_step(step_1) |
|
|
pipeline_description.add_step(step_1) |
|
|
|
|
|
|
|
|
# Step 2: extract_columns_by_semantic_types(attributes) |
|
|
# Step 2: extract_columns_by_semantic_types(attributes) |
|
|
step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common')) |
|
|
|
|
|
|
|
|
step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) |
|
|
step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') |
|
|
step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') |
|
|
step_2.add_output('produce') |
|
|
step_2.add_output('produce') |
|
|
step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
|
step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
@@ -211,7 +211,7 @@ def _generate_pipline(combinations): # pragma: no cover |
|
|
pipeline_description.add_step(step_2) |
|
|
pipeline_description.add_step(step_2) |
|
|
|
|
|
|
|
|
# Step 3: extract_columns_by_semantic_types(targets) |
|
|
# Step 3: extract_columns_by_semantic_types(targets) |
|
|
step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common')) |
|
|
|
|
|
|
|
|
step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) |
|
|
step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') |
|
|
step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') |
|
|
step_3.add_output('produce') |
|
|
step_3.add_output('produce') |
|
|
step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
|
step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
@@ -243,7 +243,7 @@ def _generate_pipline(combinations): # pragma: no cover |
|
|
#pipeline_description.add_step(tods_step_7) |
|
|
#pipeline_description.add_step(tods_step_7) |
|
|
|
|
|
|
|
|
# Finalize the pipeline |
|
|
# Finalize the pipeline |
|
|
final_step = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.construct_predictions.Common')) |
|
|
|
|
|
|
|
|
final_step = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions')) |
|
|
final_step.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.6.produce') |
|
|
final_step.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.6.produce') |
|
|
final_step.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') |
|
|
final_step.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') |
|
|
final_step.add_output('produce') |
|
|
final_step.add_output('produce') |
|
|