|
@@ -192,19 +192,19 @@ def _generate_pipline(combinations): # pragma: no cover |
|
|
# The first three steps are fixed |
|
|
# The first three steps are fixed |
|
|
# Step 0: dataset_to_dataframe |
|
|
# Step 0: dataset_to_dataframe |
|
|
step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')) |
|
|
step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')) |
|
|
step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') |
|
|
|
|
|
|
|
|
step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='inputs.0') |
|
|
step_0.add_output('produce') |
|
|
step_0.add_output('produce') |
|
|
pipeline_description.add_step(step_0) |
|
|
pipeline_description.add_step(step_0) |
|
|
|
|
|
|
|
|
# Step 1: column_parser |
|
|
# Step 1: column_parser |
|
|
step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser')) |
|
|
step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser')) |
|
|
step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') |
|
|
|
|
|
|
|
|
step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.0.produce') |
|
|
step_1.add_output('produce') |
|
|
step_1.add_output('produce') |
|
|
pipeline_description.add_step(step_1) |
|
|
pipeline_description.add_step(step_1) |
|
|
|
|
|
|
|
|
# Step 2: extract_columns_by_semantic_types(attributes) |
|
|
# Step 2: extract_columns_by_semantic_types(attributes) |
|
|
step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) |
|
|
step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) |
|
|
step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') |
|
|
|
|
|
|
|
|
step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.1.produce') |
|
|
step_2.add_output('produce') |
|
|
step_2.add_output('produce') |
|
|
step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
|
step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
|
data=['https://metadata.datadrivendiscovery.org/types/Attribute']) |
|
|
data=['https://metadata.datadrivendiscovery.org/types/Attribute']) |
|
@@ -212,7 +212,7 @@ def _generate_pipline(combinations): # pragma: no cover |
|
|
|
|
|
|
|
|
# Step 3: extract_columns_by_semantic_types(targets) |
|
|
# Step 3: extract_columns_by_semantic_types(targets) |
|
|
step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) |
|
|
step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) |
|
|
step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') |
|
|
|
|
|
|
|
|
step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.0.produce') |
|
|
step_3.add_output('produce') |
|
|
step_3.add_output('produce') |
|
|
step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
|
step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, |
|
|
data=['https://metadata.datadrivendiscovery.org/types/TrueTarget']) |
|
|
data=['https://metadata.datadrivendiscovery.org/types/TrueTarget']) |
|
@@ -222,30 +222,30 @@ def _generate_pipline(combinations): # pragma: no cover |
|
|
targets = 'steps.3.produce' |
|
|
targets = 'steps.3.produce' |
|
|
|
|
|
|
|
|
tods_step_4 = PrimitiveStep(primitive=index.get_primitive(combination[0])) |
|
|
tods_step_4 = PrimitiveStep(primitive=index.get_primitive(combination[0])) |
|
|
tods_step_4.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference=attributes) |
|
|
|
|
|
|
|
|
tods_step_4.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data=attributes) |
|
|
tods_step_4.add_output('produce') |
|
|
tods_step_4.add_output('produce') |
|
|
pipeline_description.add_step(tods_step_4) |
|
|
pipeline_description.add_step(tods_step_4) |
|
|
|
|
|
|
|
|
tods_step_5 = PrimitiveStep(primitive=index.get_primitive(combination[1])) |
|
|
tods_step_5 = PrimitiveStep(primitive=index.get_primitive(combination[1])) |
|
|
tods_step_5.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.4.produce') |
|
|
|
|
|
|
|
|
tods_step_5.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.4.produce') |
|
|
tods_step_5.add_output('produce') |
|
|
tods_step_5.add_output('produce') |
|
|
pipeline_description.add_step(tods_step_5) |
|
|
pipeline_description.add_step(tods_step_5) |
|
|
|
|
|
|
|
|
tods_step_6= PrimitiveStep(primitive=index.get_primitive(combination[2])) |
|
|
tods_step_6= PrimitiveStep(primitive=index.get_primitive(combination[2])) |
|
|
tods_step_6.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.5.produce') |
|
|
|
|
|
|
|
|
tods_step_6.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.5.produce') |
|
|
tods_step_6.add_output('produce') |
|
|
tods_step_6.add_output('produce') |
|
|
tods_step_6.add_hyperparameter(name='contamination', argument_type=ArgumentType.VALUE, data=combination[3]) |
|
|
tods_step_6.add_hyperparameter(name='contamination', argument_type=ArgumentType.VALUE, data=combination[3]) |
|
|
pipeline_description.add_step(tods_step_6) |
|
|
pipeline_description.add_step(tods_step_6) |
|
|
|
|
|
|
|
|
#tods_step_7 = PrimitiveStep(primitive=index.get_primitive(combination[3])) |
|
|
#tods_step_7 = PrimitiveStep(primitive=index.get_primitive(combination[3])) |
|
|
#tods_step_7.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.6.produce') |
|
|
|
|
|
|
|
|
#tods_step_7.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.6.produce') |
|
|
#tods_step_7.add_output('produce') |
|
|
#tods_step_7.add_output('produce') |
|
|
#pipeline_description.add_step(tods_step_7) |
|
|
#pipeline_description.add_step(tods_step_7) |
|
|
|
|
|
|
|
|
# Finalize the pipeline |
|
|
# Finalize the pipeline |
|
|
final_step = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions')) |
|
|
final_step = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions')) |
|
|
final_step.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.6.produce') |
|
|
|
|
|
final_step.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') |
|
|
|
|
|
|
|
|
final_step.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data='steps.6.produce') |
|
|
|
|
|
final_step.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data='steps.1.produce') |
|
|
final_step.add_output('produce') |
|
|
final_step.add_output('produce') |
|
|
pipeline_description.add_step(final_step) |
|
|
pipeline_description.add_step(final_step) |
|
|
|
|
|
|
|
|