diff --git a/tods/searcher/brute_force_search.py b/tods/searcher/brute_force_search.py index 611fddd..c435ed5 100644 --- a/tods/searcher/brute_force_search.py +++ b/tods/searcher/brute_force_search.py @@ -191,19 +191,19 @@ def _generate_pipline(combinations): # pragma: no cover # The first three steps are fixed # Step 0: dataset_to_dataframe - step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.dataset_to_dataframe.Common')) + step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')) step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') step_0.add_output('produce') pipeline_description.add_step(step_0) # Step 1: column_parser - step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.column_parser.Common')) + step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser')) step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') step_1.add_output('produce') pipeline_description.add_step(step_1) # Step 2: extract_columns_by_semantic_types(attributes) - step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common')) + step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') step_2.add_output('produce') step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, @@ -211,7 +211,7 @@ def _generate_pipline(combinations): # pragma: no cover pipeline_description.add_step(step_2) # Step 3: extract_columns_by_semantic_types(targets) - step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common')) + step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') step_3.add_output('produce') step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, @@ -243,7 +243,7 @@ def _generate_pipline(combinations): # pragma: no cover #pipeline_description.add_step(tods_step_7) # Finalize the pipeline - final_step = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.construct_predictions.Common')) + final_step = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions')) final_step.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.6.produce') final_step.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') final_step.add_output('produce') @@ -291,4 +291,4 @@ def _generate_pipelines(primitive_python_paths, cpu_count=40): # pragma: no cove #for p in results: # piplines.extend(p.get()) - return piplines + return piplines \ No newline at end of file