diff --git a/examples/build_Ensemble.py b/examples/build_Ensemble.py new file mode 100644 index 0000000..8534676 --- /dev/null +++ b/examples/build_Ensemble.py @@ -0,0 +1,72 @@ +from d3m import index +from d3m.metadata.base import ArgumentType +from d3m.metadata.pipeline import Pipeline, PrimitiveStep + +# -> dataset_to_dataframe -> column_parser -> extract_columns_by_semantic_types(attributes) -> imputer -> random_forest +# extract_columns_by_semantic_types(targets) -> ^ + +# Creating pipeline +pipeline_description = Pipeline() +pipeline_description.add_input(name='inputs') + +# Step 0: dataset_to_dataframe +step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.dataset_to_dataframe.Common')) +step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') +step_0.add_output('produce') +pipeline_description.add_step(step_0) + +# Step 1: column_parser +step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.column_parser.Common')) +step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') +step_1.add_output('produce') +pipeline_description.add_step(step_1) + +# Step 2: extract_columns_by_semantic_types(attributes) +step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common')) +step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') +step_2.add_output('produce') +step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, + data=['https://metadata.datadrivendiscovery.org/types/Attribute']) +pipeline_description.add_step(step_2) + +# Step 3: extract_columns_by_semantic_types(targets) +step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.data_transformation.extract_columns_by_semantic_types.Common')) +step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') +step_3.add_output('produce') +step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, + data=['https://metadata.datadrivendiscovery.org/types/TrueTarget']) +pipeline_description.add_step(step_3) + +attributes = 'steps.2.produce' +targets = 'steps.3.produce' + +# Step 4: auto encoder +step_4 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.detection_algorithm.pyod_ae')) +step_4.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference=attributes) +step_4.add_output('produce_score') +step_4.add_hyperparameter(name='use_columns', argument_type=ArgumentType.VALUE, data=[0,1,2]) +step_4.add_hyperparameter(name='use_semantic_types', argument_type=ArgumentType.VALUE, data=True) +step_4.add_hyperparameter(name='return_result', argument_type=ArgumentType.VALUE, data='append') +pipeline_description.add_step(step_4) + +# Step 5: ensemble +step_5 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.detection_algorithm.Ensemble')) +step_5.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.4.produce_score') +step_5.add_output('produce') +pipeline_description.add_step(step_5) + + +# Final Output +pipeline_description.add_output(name='output predictions', data_reference='steps.5.produce') + +# Output to YAML +#yaml = pipeline_description.to_yaml() +#with open('pipeline.yml', 'w') as f: +# f.write(yaml) +#prin(yaml) + +# Output to json +data = pipeline_description.to_json() +with open('example_pipeline.json', 'w') as f: + f.write(data) + print(data)