from d3m import index from d3m.metadata.base import ArgumentType from d3m.metadata.pipeline import Pipeline, PrimitiveStep # -> dataset_to_dataframe -> column_parser -> extract_columns_by_semantic_types(attributes) -> imputer -> random_forest # extract_columns_by_semantic_types(targets) -> ^ # Creating pipeline pipeline_description = Pipeline() pipeline_description.add_input(name='inputs') # Step 0: dataset_to_dataframe step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')) step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') step_0.add_output('produce') pipeline_description.add_step(step_0) # Step 1: column_parser step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser')) step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') step_1.add_output('produce') pipeline_description.add_step(step_1) # Step 2: extract_columns_by_semantic_types(attributes) step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') step_2.add_output('produce') step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, data=['https://metadata.datadrivendiscovery.org/types/Attribute']) pipeline_description.add_step(step_2) # Step 3: extract_columns_by_semantic_types(targets) step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') step_3.add_output('produce') step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, data=['https://metadata.datadrivendiscovery.org/types/TrueTarget']) pipeline_description.add_step(step_3) attributes = 'steps.2.produce' targets = 'steps.3.produce' # Step 4: processing #step_4 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.timeseries_processing.transformation.axiswise_scaler')) step_4 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.feature_analysis.statistical_maximum')) #step_4 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.feature_analysis.statistical_minimum')) step_4.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference=attributes) step_4.add_output('produce') pipeline_description.add_step(step_4) # Step 5: algorithm` step_5 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.detection_algorithm.pyod_ae')) step_5.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.4.produce') #step_5.add_hyperparameter(name='hidden_neurons', argument_type=ArgumentType.VALUE, data=[32,16,8,16,32]) step_5.add_output('produce') pipeline_description.add_step(step_5) # Step 6: Predictions step_6 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions')) step_6.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.5.produce') step_6.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') step_6.add_output('produce') pipeline_description.add_step(step_6) # Final Output pipeline_description.add_output(name='output predictions', data_reference='steps.6.produce') # Output to json data = pipeline_description.to_json() with open('autoencoder_pipeline.json', 'w') as f: f.write(data) print(data)