from d3m import index from d3m.metadata.base import ArgumentType from d3m.metadata.pipeline import Pipeline, PrimitiveStep # -> dataset_to_dataframe -> column_parser -> extract_columns_by_semantic_types(attributes) -> imputer -> random_forest # extract_columns_by_semantic_types(targets) -> ^ # Creating pipeline pipeline_description = Pipeline() pipeline_description.add_input(name='inputs') # Step 0: dataset_to_dataframe primitive_0 = index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe') step_0 = PrimitiveStep(primitive=primitive_0) step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0') step_0.add_output('produce') pipeline_description.add_step(step_0) # Step 1: column_parser step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser')) step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') step_1.add_output('produce') pipeline_description.add_step(step_1) # Step 2: extract_columns_by_semantic_types(attributes) step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce') step_2.add_output('produce') step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, data=['https://metadata.datadrivendiscovery.org/types/Attribute']) pipeline_description.add_step(step_2) # Step 3: extract_columns_by_semantic_types(targets) step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types')) step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce') step_3.add_output('produce') step_3.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE, data=['https://metadata.datadrivendiscovery.org/types/TrueTarget']) pipeline_description.add_step(step_3) attributes = 'steps.2.produce' targets = 'steps.3.produce' # Step 4: imputer step_4 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.impute_missing')) step_4.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference=attributes) step_4.add_output('produce') pipeline_description.add_step(step_4) # Step 5: simple exponential smoothing step_5 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.timeseries_processing.transformation.simple_exponential_smoothing')) step_5.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference=attributes) step_5.add_hyperparameter(name="use_columns", argument_type=ArgumentType.VALUE, data = (1,)) step_5.add_hyperparameter(name="use_semantic_types", argument_type=ArgumentType.VALUE, data = True) step_5.add_output('produce') pipeline_description.add_step(step_5) # Step 6: isolation forest #step_6 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.anomaly_detection.isolation_forest.Algorithm')) #step_6.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.5.produce') #step_6.add_argument(name='outputs', argument_type=ArgumentType.CONTAINER, data_reference=targets) #step_6.add_output('produce') #pipeline_description.add_step(step_6) # Final Output pipeline_description.add_output(name='output predictions', data_reference='steps.5.produce') # Output to YAML yaml = pipeline_description.to_yaml() with open('pipeline.yml', 'w') as f: f.write(yaml) print(yaml) # Or you can output json #data = pipline_description.to_json()