|
- import os
- import time
- from pprint import pprint
- import pandas as pd
- from sklearn.datasets import make_regression
-
- from d3m import container
- from d3m.metadata.pipeline import Pipeline
-
- from axolotl.utils import data_problem, pipeline as pipeline_utils
- from axolotl.backend.simple import SimpleRunner
- from axolotl.backend.ray import RayRunner
- from axolotl.algorithms.random_search import RandomSearch
-
- # init runner
- #backend = RayRunner(random_seed=42, volumes_dir=None, n_workers=3)
- backend = SimpleRunner(random_seed=42, volumes_dir=None)
- #time.sleep(30)
-
- table_path = os.path.join('..', 'tests', 'data', 'datasets', 'iris_dataset_1', 'tables', 'learningData.csv')
- df = pd.read_csv(table_path)
- dataset, problem_description = data_problem.generate_dataset_problem(df, task='binary_classification', target_index=5)
-
- # The method fit search for the best pipeline based on the time butget and fit the best pipeline based on the rank with the input_data.
- search = RandomSearch(problem_description=problem_description, backend=backend)
-
- fitted_pipeline, fitted_pipelineine_result = search.search_fit(input_data=[dataset], time_limit=30)
-
- produce_results = search.produce(fitted_pipeline, [dataset])
-
- print(produce_results.output)
|