|
- import os
- from typing import Any,Optional,List
- import statsmodels.api as sm
- import numpy as np
- from d3m import container, utils as d3m_utils
- from d3m import utils
-
- from numpy import ndarray
- from collections import OrderedDict
- from scipy import sparse
- import os
- import uuid
-
- import numpy
- import typing
- import time
-
- from d3m import container
- from d3m.primitive_interfaces import base, transformer
-
- from d3m.container import DataFrame as d3m_dataframe
- from d3m.metadata import hyperparams, params, base as metadata_base
-
- from d3m.base import utils as base_utils
- from d3m.exceptions import PrimitiveNotFittedError
-
- __all__ = ('SpectralResidualTransformPrimitive',)
-
- Inputs = container.DataFrame
- Outputs = container.DataFrame
-
- class Params(params.Params):
- #to-do : how to make params dynamic
- use_column_names: Optional[Any]
-
-
-
- class Hyperparams(hyperparams.Hyperparams):
-
- #Tuning Parameter
-
- avg_filter_dimension = hyperparams.Hyperparameter(default=3, semantic_types=[
- 'https://metadata.datadrivendiscovery.org/types/TuningParameter',
- ], description="Spectral Residual average filter dimension")
- #control parameter
- use_columns = hyperparams.Set(
- elements=hyperparams.Hyperparameter[int](-1),
- default=(),
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
- description="A set of column indices to force primitive to operate on. If any specified column cannot be parsed, it is skipped.",
- )
- exclude_columns = hyperparams.Set(
- elements=hyperparams.Hyperparameter[int](-1),
- default=(),
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
- description="A set of column indices to not operate on. Applicable only if \"use_columns\" is not provided.",
- )
- return_result = hyperparams.Enumeration(
- values=['append', 'replace', 'new'],
- default='append',
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
- description="Should parsed columns be appended, should they replace original columns, or should only parsed columns be returned? This hyperparam is ignored if use_semantic_types is set to false.",
- )
- use_semantic_types = hyperparams.UniformBool(
- default=False,
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
- description="Controls whether semantic_types metadata will be used for filtering columns in input dataframe. Setting this to false makes the code ignore return_result and will produce only the output dataframe"
- )
- add_index_columns = hyperparams.UniformBool(
- default=False,
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
- description="Also include primary index columns if input data has them. Applicable only if \"return_result\" is set to \"new\".",
- )
- error_on_no_input = hyperparams.UniformBool(
- default=True,
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter'],
- description="Throw an exception if no input column is selected/provided. Defaults to true to behave like sklearn. To prevent pipelines from breaking set this to False.",
- )
-
- return_semantic_type = hyperparams.Enumeration[str](
- values=['https://metadata.datadrivendiscovery.org/types/Attribute',
- 'https://metadata.datadrivendiscovery.org/types/ConstructedAttribute'],
- default='https://metadata.datadrivendiscovery.org/types/Attribute',
- description='Decides what semantic type to attach to generated attributes',
- semantic_types=['https://metadata.datadrivendiscovery.org/types/ControlParameter']
- )
-
-
-
- class SpectralResidualTransformPrimitive(transformer.TransformerPrimitiveBase[Inputs, Outputs, Hyperparams]):
- """
- Primitive to find Spectral Residual Transform of time series
- """
- metadata = metadata_base.PrimitiveMetadata({
- "__author__": "DATA Lab @ Texas A&M University",
- 'name': 'Time Series Spectral Residual',
- 'python_path': 'd3m.primitives.tods.feature_analysis.spectral_residual_transform',
- 'keywords': ['Time Series','FFT'],
- 'source': {
- 'name': 'DATA Lab @ Texas A&M University',
- 'contact': 'mailto:khlai037@tamu.edu'
-
- },
- "hyperparams_to_tune": ['avg_filter_dimension'],
- 'version': '0.1.0',
- 'algorithm_types': [
- metadata_base.PrimitiveAlgorithmType.TODS_PRIMITIVE,
- ],
- 'primitive_family': metadata_base.PrimitiveFamily.FEATURE_CONSTRUCTION,
- 'id': str(uuid.uuid3(uuid.NAMESPACE_DNS, 'SpectralResidualTransformPrimitive')),
- })
-
- def produce(self, *, inputs: Inputs, timeout: float = None, iterations: int = None) -> base.CallResult[Outputs]:
- """
-
- Args:
- inputs: Container DataFrame
- timeout: Default
- iterations: Default
-
- Returns:
- Container DataFrame containing Spectral Residual Transform of time series
- """
-
- self.logger.info('Spectral Residual Primitive called')
-
- # Get cols to fit.
- self._fitted = False
- self._training_inputs, self._training_indices = self._get_columns_to_fit(inputs, self.hyperparams)
- self._input_column_names = self._training_inputs.columns
-
- if len(self._training_indices) > 0:
- # self._clf.fit(self._training_inputs)
- self._fitted = True
- else: # pragma: no cover
- if self.hyperparams['error_on_no_input']:
- raise RuntimeError("No input columns were selected")
- self.logger.warn("No input columns were selected")
-
- if not self._fitted:
- raise PrimitiveNotFittedError("Primitive not fitted.")
- spectral_residual_input = inputs
- if self.hyperparams['use_semantic_types']:
- spectral_residual_input = inputs.iloc[:, self._training_indices]
- output_columns = []
- if len(self._training_indices) > 0:
- spectral_residual_output = self._spectral_residual_transform(spectral_residual_input,self.hyperparams["avg_filter_dimension"])
-
- if sparse.issparse(spectral_residual_output):
- spectral_residual_output = spectral_residual_output.toarray()
- outputs = self._wrap_predictions(inputs, spectral_residual_output)
-
- #if len(outputs.columns) == len(self._input_column_names):
- # outputs.columns = self._input_column_names
-
- output_columns = [outputs]
-
-
- else: # pragma: no cover
- if self.hyperparams['error_on_no_input']:
- raise RuntimeError("No input columns were selected")
- self.logger.warn("No input columns were selected")
- outputs = base_utils.combine_columns(return_result=self.hyperparams['return_result'],
- add_index_columns=self.hyperparams['add_index_columns'],
- inputs=inputs, column_indices=self._training_indices,
- columns_list=output_columns)
-
- self.logger.info('Spectral Residual Primitive returned')
-
- return base.CallResult(outputs)
-
- @classmethod
- def _get_columns_to_fit(cls, inputs: Inputs, hyperparams: Hyperparams):
- """
- Select columns to fit.
- Args:
- inputs: Container DataFrame
- hyperparams: d3m.metadata.hyperparams.Hyperparams
-
- Returns:
- list
- """
- if not hyperparams['use_semantic_types']:
- return inputs, list(range(len(inputs.columns)))
-
- inputs_metadata = inputs.metadata
-
- def can_produce_column(column_index: int) -> bool:
- return cls._can_produce_column(inputs_metadata, column_index, hyperparams)
-
- use_columns = hyperparams['use_columns']
- exclude_columns = hyperparams['exclude_columns']
-
- columns_to_produce, columns_not_to_produce = base_utils.get_columns_to_use(inputs_metadata,
- use_columns=use_columns,
- exclude_columns=exclude_columns,
- can_use_column=can_produce_column)
- return inputs.iloc[:, columns_to_produce], columns_to_produce
- # return columns_to_produce
-
- @classmethod
- def _can_produce_column(cls, inputs_metadata: metadata_base.DataMetadata, column_index: int,
- hyperparams: Hyperparams) -> bool:
- """
- Output whether a column can be processed.
- Args:
- inputs_metadata: d3m.metadata.base.DataMetadata
- column_index: int
-
- Returns:
- bool
- """
- column_metadata = inputs_metadata.query((metadata_base.ALL_ELEMENTS, column_index))
-
- accepted_structural_types = (int, float, numpy.integer, numpy.float64)
- accepted_semantic_types = set()
- accepted_semantic_types.add("https://metadata.datadrivendiscovery.org/types/Attribute")
- if not issubclass(column_metadata['structural_type'], accepted_structural_types):
- return False
-
- semantic_types = set(column_metadata.get('semantic_types', []))
- return True
- if len(semantic_types) == 0:
- cls.logger.warning("No semantic types found in column metadata")
- return False
-
- # Making sure all accepted_semantic_types are available in semantic_types
- if len(accepted_semantic_types - semantic_types) == 0:
- return True
-
- return False
-
- @classmethod
- def _update_predictions_metadata(cls, inputs_metadata: metadata_base.DataMetadata, outputs: Optional[Outputs],
- target_columns_metadata: List[OrderedDict]) -> metadata_base.DataMetadata:
- """
- Updata metadata for selected columns.
- Args:
- inputs_metadata: metadata_base.DataMetadata
- outputs: Container Dataframe
- target_columns_metadata: list
-
- Returns:
- d3m.metadata.base.DataMetadata
- """
- outputs_metadata = metadata_base.DataMetadata().generate(value=outputs)
-
- for column_index, column_metadata in enumerate(target_columns_metadata):
- column_metadata.pop("structural_type", None)
- outputs_metadata = outputs_metadata.update_column(column_index, column_metadata)
-
- return outputs_metadata
-
- def _wrap_predictions(self, inputs: Inputs, predictions: ndarray) -> Outputs:
- """
- Wrap predictions into dataframe
- Args:
- inputs: Container Dataframe
- predictions: array-like data (n_samples, n_features)
-
- Returns:
- Dataframe
- """
- outputs = d3m_dataframe(predictions, generate_metadata=True)
- target_columns_metadata = self._add_target_columns_metadata(outputs.metadata, self.hyperparams)
- outputs.metadata = self._update_predictions_metadata(inputs.metadata, outputs, target_columns_metadata)
-
- return outputs
-
- @classmethod
- def _add_target_columns_metadata(cls, outputs_metadata: metadata_base.DataMetadata, hyperparams):
- """
- Add target columns metadata
- Args:
- outputs_metadata: metadata.base.DataMetadata
- hyperparams: d3m.metadata.hyperparams.Hyperparams
-
- Returns:
- List[OrderedDict]
- """
- outputs_length = outputs_metadata.query((metadata_base.ALL_ELEMENTS,))['dimension']['length']
- target_columns_metadata: List[OrderedDict] = []
- for column_index in range(outputs_length):
- # column_name = "output_{}".format(column_index)
- column_metadata = OrderedDict()
- semantic_types = set()
- semantic_types.add(hyperparams["return_semantic_type"])
- column_metadata['semantic_types'] = list(semantic_types)
-
- # column_metadata["name"] = str(column_name)
- target_columns_metadata.append(column_metadata)
-
- return target_columns_metadata
-
- def _spectral_residual_transform(self, X,avg_filter_dimension):
- """
- This method transform a time series into spectral residual series
- :param values: list.
- a list of float values.
- :return: mag: list.
- a list of float values as the spectral residual values
- """
- EPS = 1e-8
- transformed_X = utils.pandas.DataFrame()
- for column in X.columns:
- values = X[column].values
- trans = np.fft.fft(values)
- mag = np.sqrt(trans.real ** 2 + trans.imag ** 2)
- eps_index = np.where(mag <= EPS)[0]
- mag[eps_index] = EPS
-
- mag_log = np.log(mag)
- mag_log[eps_index] = 0
- spectral = np.exp(mag_log - self._average_filter(mag_log, n=avg_filter_dimension))
-
- trans.real = trans.real * spectral / mag
- trans.imag = trans.imag * spectral / mag
- trans.real[eps_index] = 0
- trans.imag[eps_index] = 0
-
- wave_r = np.fft.ifft(trans)
- mag = np.round(np.sqrt(wave_r.real ** 2 + wave_r.imag ** 2),4)
- transformed_X[column + "_spectral_residual"] = mag
-
- return transformed_X
-
- def _average_filter(self,values, n=3):
- """
- Calculate the sliding window average for the give time series.
- Mathematically, res[i] = sum_{j=i-t+1}^{i} values[j] / t, where t = min(n, i+1)
- :param values: list.
- a list of float numbers
- :param n: int, default 3.
- window size.
- :return res: list.
- a list of value after the average_filter process.
- """
-
- if n >= len(values):
- n = len(values)
-
- res = np.cumsum(values, dtype=float)
- res[n:] = res[n:] - res[:-n]
- res[n:] = res[n:] / n
-
- for i in range(1, n):
- res[i] /= (i + 1)
-
- return res
-
- def _write(self, inputs: Inputs): # pragma: no cover
- inputs.to_csv(str(time.time()) + '.csv')
-
|