|
- from d3m import index
- from d3m.metadata.base import ArgumentType
- from d3m.metadata.pipeline import Pipeline, PrimitiveStep
-
-
- # Creating pipeline
- pipeline_description = Pipeline()
- pipeline_description.add_input(name='inputs')
-
-
- # Step 0: dataset_to_dataframe
- primitive_0 = index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')
- step_0 = PrimitiveStep(primitive=primitive_0)
- step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0')
- step_0.add_output('produce')
- pipeline_description.add_step(step_0)
-
- # Step 1: Column Parser
- primitive_1 = index.get_primitive('d3m.primitives.tods.data_processing.column_parser')
- step_1 = PrimitiveStep(primitive=primitive_1)
- step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce')
- step_1.add_output('produce')
- pipeline_description.add_step(step_1)
-
- # Step 2: extract_columns_by_semantic_types(attributes)
- step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types'))
- step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce')
- step_2.add_output('produce')
- step_2.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE,
- data=['https://metadata.datadrivendiscovery.org/types/Attribute'])
- pipeline_description.add_step(step_2)
-
- # Step 3: Non Negative Matrix Factorization
- step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.feature_analysis.non_negative_matrix_factorization'))
- step_3.add_hyperparameter(name='use_semantic_types', argument_type=ArgumentType.VALUE, data=True)
- step_3.add_hyperparameter(name='use_columns', argument_type=ArgumentType.VALUE, data=(2,))
- step_3.add_hyperparameter(name='return_result', argument_type=ArgumentType.VALUE, data='append')
- step_3.add_hyperparameter(name='rank', argument_type=ArgumentType.VALUE, data=5)
- step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.2.produce')
- step_3.add_output('produce')
- pipeline_description.add_step(step_3)
-
- # Final Output
- pipeline_description.add_output(name='output predictions', data_reference='steps.3.produce')
-
- # Output to JSON
- data = pipeline_description.to_json()
- with open('example_pipeline.json', 'w') as f:
- f.write(data)
- print(data)
|