|
- from d3m import index
- from d3m.metadata.base import ArgumentType
- from d3m.metadata.pipeline import Pipeline, PrimitiveStep
- from d3m.metadata import hyperparams
- import copy
-
- # -> dataset_to_dataframe -> column_parser -> extract_columns_by_semantic_types(attributes) -> imputer -> random_forest
- # extract_columns_by_semantic_types(targets) -> ^
-
- # Creating pipeline
- pipeline_description = Pipeline()
- pipeline_description.add_input(name='inputs')
-
- # Step 0: dataset_to_dataframe
- primitive_0 = index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe')
- step_0 = PrimitiveStep(primitive=primitive_0)
- step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0')
- step_0.add_output('produce')
- pipeline_description.add_step(step_0)
-
- # # Step 1: column_parser
- primitive_1 = index.get_primitive('d3m.primitives.tods.data_processing.column_parser')
- step_1 = PrimitiveStep(primitive=primitive_1)
- step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce')
- step_1.add_output('produce')
- pipeline_description.add_step(step_1)
-
- # # Step 2: test primitive
- primitive_2 = index.get_primitive('d3m.primitives.tods.detection_algorithm.pyod_sogaal')
-
- step_2 = PrimitiveStep(primitive=primitive_2)
- step_2.add_hyperparameter(name='contamination', argument_type=ArgumentType.VALUE, data=0.1)
- step_2.add_hyperparameter(name='use_semantic_types', argument_type=ArgumentType.VALUE, data=True)
- step_2.add_hyperparameter(name='use_columns', argument_type=ArgumentType.VALUE, data=(2,)) # There is sth wrong with multi-dimensional
- step_2.add_hyperparameter(name='return_result', argument_type=ArgumentType.VALUE, data='append')
- step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce')
- step_2.add_output('produce')
- pipeline_description.add_step(step_2)
-
- # Final Output
- pipeline_description.add_output(name='output predictions', data_reference='steps.2.produce')
-
- # Output to YAML
- yaml = pipeline_description.to_yaml()
- with open('pipeline.yml', 'w') as f:
- f.write(yaml)
- print(yaml)
-
- # Or you can output json
- #data = pipline_description.to_json()
|