|
- import argparse
-
- from d3m import index
- from d3m.metadata.base import ArgumentType
- from d3m.metadata.pipeline import Pipeline, PrimitiveStep
-
-
- # Creating pipeline
- pipeline_description = Pipeline()
- pipeline_description.add_input(name='inputs')
-
- #Step 0: Denormalise
- step_0 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.common.denormalize'))
- step_0.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='inputs.0')
- step_0.add_output('produce')
- pipeline_description.add_step(step_0)
-
- #Step 1: Convert the dataset to a DataFrame
- step_1 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.dataset_to_dataframe'))
- step_1.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.0.produce')
- step_1.add_output('produce')
- pipeline_description.add_step(step_1)
-
- #Step 2: Read the csvs corresponding to the paths in the Dataframe in the form of arrays
- step_2 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.common.csv_reader'))
- step_2.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce')
- step_2.add_output('produce')
- step_2.add_hyperparameter(name = 'use_columns', argument_type=ArgumentType.VALUE, data = [0,1])
- step_2.add_hyperparameter(name = 'return_result', argument_type=ArgumentType.VALUE, data = 'replace')
- pipeline_description.add_step(step_2)
-
- #Step 3: Column Parser
- step_3 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.column_parser'))
- step_3.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.2.produce')
- step_3.add_output('produce')
- step_3.add_hyperparameter(name='parse_semantic_types', argument_type=ArgumentType.VALUE,
- data=['http://schema.org/Boolean','http://schema.org/Integer', 'http://schema.org/Float', 'https://metadata.datadrivendiscovery.org/types/FloatVector',])
- pipeline_description.add_step(step_3)
-
- # Step 4: extract_columns_by_semantic_types(attributes)
- step_4 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types'))
- step_4.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.3.produce')
- step_4.add_output('produce')
- step_4.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE,
- data=['https://metadata.datadrivendiscovery.org/types/Attribute'])
- pipeline_description.add_step(step_4)
-
- # Step 5: extract_columns_by_semantic_types(targets)
- step_5 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.extract_columns_by_semantic_types'))
- step_5.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.3.produce')
- step_5.add_output('produce')
- step_5.add_hyperparameter(name='semantic_types', argument_type=ArgumentType.VALUE,
- data=['https://metadata.datadrivendiscovery.org/types/TrueTarget'])
- pipeline_description.add_step(step_5)
-
- attributes = 'steps.4.produce'
- targets = 'steps.5.produce'
-
- # Step 6: processing
- step_6 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.feature_analysis.statistical_maximum'))
- step_6.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference=attributes)
- step_6.add_output('produce')
- pipeline_description.add_step(step_6)
-
- # Step 7: algorithm
- #step_7 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.detection_algorithm.pyod_ae'))
- step_7 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.detection_algorithm.pyod_ocsvm'))
- step_7.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.6.produce')
- step_7.add_output('produce_score')
- pipeline_description.add_step(step_7)
-
- # Step 8: Predictions
- #step_8 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions'))
- step_8 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.detection_algorithm.system_wise_detection'))
- step_8.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.7.produce_score')
- #step_8.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce')
- step_8.add_output('produce')
- pipeline_description.add_step(step_8)
-
- step_9 = PrimitiveStep(primitive=index.get_primitive('d3m.primitives.tods.data_processing.construct_predictions'))
- step_9.add_argument(name='inputs', argument_type=ArgumentType.CONTAINER, data_reference='steps.8.produce')
- step_9.add_argument(name='reference', argument_type=ArgumentType.CONTAINER, data_reference='steps.1.produce')
- step_9.add_output('produce')
- pipeline_description.add_step(step_9)
-
- # Final Output
- pipeline_description.add_output(name='output predictions', data_reference='steps.9.produce')
-
- # Output to json
- data = pipeline_description.to_json()
- with open('system_pipeline.json', 'w') as f:
- f.write(data)
- print(data)
|