|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116 |
- # Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds
-
- [![python-image]][python-url]
- [![pytorch-image]][pytorch-url]
-
- ---
-
- ## 1. Getting Started
- ### 1.1 Requirement
-
- The instructions for setting up a virtual environment is [here](https://github.com/maudzung/virtual_environment_python3).
-
- ```shell script
- cd SFA3D/
- pip install -r requirements.txt
- ```
-
- ### 1.2 Data Preparation
- Download the 3D KITTI detection dataset from [here](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d).
-
- The downloaded data includes:
-
- - Velodyne point clouds _**(29 GB)**_
- - Training labels of object data set _**(5 MB)**_
-
-
-
- Please make sure that you construct the source code & dataset directories structure as below.
-
- ## 2. How to run
-
-
- ### 2.1 Inference
-
- The pre-trained model was pushed to this repo.
- - **CPU**
- ```
- python inference.py --no_cuda=True
- ```
- - **GPU**
- ```
- python inference.py
- ```
- Label of inference
-
- - Pedestrian
- - Car
- - Cyclist
-
- ### 2.2 Training
- #### 2.2.1 CPU
- ```
- python train.py --no_cuda=True
- ```
-
- #### 2.2.2 Single machine, single gpu
-
- ```shell script
- python train.py --gpu_idx 0
- ```
-
- #### 2.2.3 Distributed Data Parallel Training
- - **Single machine (node), multiple GPUs**
-
- ```
- python train.py --multiprocessing-distributed --world-size 1 --rank 0 --batch_size 64 --num_workers 8
- ```
-
- - **Two machines (two nodes), multiple GPUs**
-
- - _**First machine**_
- ```
- python train.py --dist-url 'tcp://IP_OF_NODE1:FREEPORT' --multiprocessing-distributed --world-size 2 --rank 0 --batch_size 64 --num_workers 8
- ```
-
- - _**Second machine**_
- ```
- python train.py --dist-url 'tcp://IP_OF_NODE2:FREEPORT' --multiprocessing-distributed --world-size 2 --rank 1 --batch_size 64 --num_workers 8
- ```
-
- ## References
- [1] SFA3D: [PyTorch Implementation](https://github.com/maudzung/SFA3D)
-
- ## Folder structure
- ### Dataset
- ```
- └── kitti/
- ├── image_2/ (left color camera,非必须)
- ├── calib/ (非必须)
- ├── label_2/ (标注结果/标签,非必须)
- └── velodyne/ (点云文件,必须)
- ```
- ### Checkpoints & Algorithm
- ```
- ${ROOT}
- └── checkpoints/
- ├── fpn_resnet_18/
- ├── fpn_resnet_18_epoch_300.pth (点云目标检测标注模型)
- └── sfa/ (点云标注算法)
- ├── config/
- ├── data_process/
- ├── models/
- ├── utils/
- ├── inference.py
- └── train.py
- ├── README.md
- ├── LICENSE
- └── requirements.txt
- ```
-
-
-
- [python-image]: https://img.shields.io/badge/Python-3.6-ff69b4.svg
- [python-url]: https://www.python.org/
- [pytorch-image]: https://img.shields.io/badge/PyTorch-1.5-2BAF2B.svg
- [pytorch-url]: https://pytorch.org/
|