You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 2.9 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116
  1. # Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds
  2. [![python-image]][python-url]
  3. [![pytorch-image]][pytorch-url]
  4. ---
  5. ## 1. Getting Started
  6. ### 1.1 Requirement
  7. The instructions for setting up a virtual environment is [here](https://github.com/maudzung/virtual_environment_python3).
  8. ```shell script
  9. cd SFA3D/
  10. pip install -r requirements.txt
  11. ```
  12. ### 1.2 Data Preparation
  13. Download the 3D KITTI detection dataset from [here](http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d).
  14. The downloaded data includes:
  15. - Velodyne point clouds _**(29 GB)**_
  16. - Training labels of object data set _**(5 MB)**_
  17. Please make sure that you construct the source code & dataset directories structure as below.
  18. ## 2. How to run
  19. ### 2.1 Inference
  20. The pre-trained model was pushed to this repo.
  21. - **CPU**
  22. ```
  23. python inference.py --no_cuda=True
  24. ```
  25. - **GPU**
  26. ```
  27. python inference.py
  28. ```
  29. Label of inference
  30. - Pedestrian
  31. - Car
  32. - Cyclist
  33. ### 2.2 Training
  34. #### 2.2.1 CPU
  35. ```
  36. python train.py --no_cuda=True
  37. ```
  38. #### 2.2.2 Single machine, single gpu
  39. ```shell script
  40. python train.py --gpu_idx 0
  41. ```
  42. #### 2.2.3 Distributed Data Parallel Training
  43. - **Single machine (node), multiple GPUs**
  44. ```
  45. python train.py --multiprocessing-distributed --world-size 1 --rank 0 --batch_size 64 --num_workers 8
  46. ```
  47. - **Two machines (two nodes), multiple GPUs**
  48. - _**First machine**_
  49. ```
  50. python train.py --dist-url 'tcp://IP_OF_NODE1:FREEPORT' --multiprocessing-distributed --world-size 2 --rank 0 --batch_size 64 --num_workers 8
  51. ```
  52. - _**Second machine**_
  53. ```
  54. python train.py --dist-url 'tcp://IP_OF_NODE2:FREEPORT' --multiprocessing-distributed --world-size 2 --rank 1 --batch_size 64 --num_workers 8
  55. ```
  56. ## References
  57. [1] SFA3D: [PyTorch Implementation](https://github.com/maudzung/SFA3D)
  58. ## Folder structure
  59. ### Dataset
  60. ```
  61. └── kitti/
  62. ├── image_2/ (left color camera,非必须)
  63. ├── calib/ (非必须)
  64. ├── label_2/ (标注结果/标签,非必须)
  65. └── velodyne/ (点云文件,必须)
  66. ```
  67. ### Checkpoints & Algorithm
  68. ```
  69. ${ROOT}
  70. └── checkpoints/
  71. ├── fpn_resnet_18/
  72. ├── fpn_resnet_18_epoch_300.pth (点云目标检测标注模型)
  73. └── sfa/ (点云标注算法)
  74. ├── config/
  75. ├── data_process/
  76. ├── models/
  77. ├── utils/
  78. ├── inference.py
  79. └── train.py
  80. ├── README.md
  81. ├── LICENSE
  82. └── requirements.txt
  83. ```
  84. [python-image]: https://img.shields.io/badge/Python-3.6-ff69b4.svg
  85. [python-url]: https://www.python.org/
  86. [pytorch-image]: https://img.shields.io/badge/PyTorch-1.5-2BAF2B.svg
  87. [pytorch-url]: https://pytorch.org/

一站式算法开发平台、高性能分布式深度学习框架、先进算法模型库、视觉模型炼知平台、数据可视化分析平台等一系列平台及工具,在模型高效分布式训练、数据处理和可视分析、模型炼知和轻量化等技术上形成独特优势,目前已在产学研等各领域近千家单位及个人提供AI应用赋能