|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629 |
- ## 依赖
-
- - 依赖 Python3.7 环境,建议使用 Anaconda 创建虚拟环境
-
- ```shell
- # 首次使用,执行
- bash init.sh
- # 创建虚拟环境完毕后,后续启动服务,请执行
- source start_server.sh
- # 关闭服务,请执行
- source stop_server.sh
- ```
-
- - 依赖 [Redis](https://redis.io/download) 作为中间件
-
- ## 启动
-
- 启动及部署过程参看文档:[部署可视化服务](http://tianshu.org.cn/?/course/1.html)
-
- ## 初始请求
-
- 在用户初始请求时,先请求等待页面`api/init?id=test&trainJobName=test`其中参数`id`与参数`trainJobName`必须指定。这里请求的是用户为test,train为test的日志。
-
- 待后端载入完成指定用后的日志后,若成功则返回:
-
- ```json
- {"code": 200, "msg": "ok", "data": {"msg": "success", "session_id": "avzppbc6e2jo3t5bbhpokh96gp1vrgju"}}
- ```
-
- # **以下数据格式仅供参考,以实际返回为准**
-
- ## 类目信息
-
- 在初始化完成后,需请求类目信息。
-
- 请求api`api/getCategory`返回所有类目的标签,若日志中不存在某一类目信息,则返回空数组。
-
- 其中图`graph`tag信息,固定为`s_graph`与`c_graph`;超参数没有tag,若日志中含有超参数则返回tag为`true`
-
- 格式如下:
-
- 返回数据格式如下:
-
- ```python
- {
- .: {
- scalar: {},
- media: {image: [], audio: [], text: []},
- statistic: {histogram: []},
- graph: [],
- ...
- }
- train: {
- scalar: {epoch_loss: ["epoch_loss"], epoch_accuracy: ["epoch_accuracy"]}
- media: {image: [],…}
- statistic: {histogram: []}
- graph: ["c_graph"]
- embedding: ["layer1/weights/Variable:0", "layer1/biases/Variable:0", …]
- hparams: ["true"]
- custom: ["true"]
- }
- vgg: {
- scalar: {,…}
- media: {,…}
- statistic: {,…}
- graph: ["s_graph"]
- embedding: []
- hparams: []
- custom: ["true"]
- }
- }
- ```
-
- ## Scalar
-
- 根据tag,请求api:`api/scalar?run=.&tag=layer1/weights/summaries/mean`得到tag为`layer1/weights/summaries/mean`的数据
-
- 其中`run`与`tag`缺一不可
-
- 返回数据格式
-
- ```json
- {
- "layer1/weights/summaries/mean":
- [
- {"wall_time": 1587176310.3070214, "step": 0, "value": -6.488610961241648e-05},
- ...,
- {"wall_time": 1587176425.348953, "step": 190, "value": -0.002039810409769416}
- ]
- }
- ```
-
- 随后随着数据量的增大,可能直接返回数组形式
-
- ```json
- [
- [1587176310.3070214, 0, 0.12780000269412994],
- ...
- [1587176425.348953, 190, 0.9401999711990356]
- ]
- ```
-
- 第一列是`wall_time`,第二列是`step`,第三列是`value`
-
- ## Image
-
- 由于前端不能处理图片,所以图片请求分为两个地址
-
- 图片的信息,请求api:`api/image?run=.&tag=input_reshape/input/image/0`可获得tag为`input_reshape/input/image/0`的图片信息
-
- 其中`run`与`tag`缺一不可
-
- 返回数据格式
-
- ```python
- {
- "input_reshape/input/image/0":
- [
- {"wall_time": 1587176317.1721938, "step": 10, "width": 28, "height": 28},
- ...
- {"wall_time": 1587176425.348953, "step": 190, "width": 28, "height": 28}
- ]
- }
- ```
-
- 拿到图片信息之后,再向后台请求图片
-
- 请求api:`api/image_raw?step=0&run=.&tag=input_reshape/input/image/0`可获得tag为`input_reshape/input/image/0`在第0代时候的图片
-
- 其中`step`、`run`与`tag`缺一不可
-
- 返回数据为图像本身
-
- ## Histogram
-
- 请求api:`api/histogram?run=.&tag=layer1/weights/summaries/histogram/histogram_summary`可获得tag为`layer1/weights/summaries/histogram/histogram_summary`的数据
-
- 其中`run`与`tag`缺一不可
-
- 返回数据格式
-
- ```json
- {
- "layer1/activations/histogram_summary":
- [
- [1587176317.1721938, 10, 0.0, 5.297224044799805,
- [[0.0, 0.17657413482666015, 2801825.0],
- ...
- [5.120649909973144, 5.297224044799805, 2.0]]
- ],
- ...
- [1587176425.348953, 190, 0.0, 6.3502936363220215,
- [[0.0, 0.2116764545440674, 3229943.0],
- ...
- [6.1386171817779545, 6.3502936363220215, 8.0]]
- ]
- ]
- }
- ```
-
- 格式为
-
- ```json
- [
- wall_time, step, min, max,
- [[left, right, num],
- ...
- [left, right, num]]
- ]
- ```
-
- ## Distribution
-
- 请求api:`api/distribution?run=.&tag=layer1/weights/summaries/histogram/histogram_summary`可获得tag为`layer1/weights/summaries/histogram/histogram_summary`的数据
-
- 其中`run`与`tag`缺一不可
-
- 返回数据格式
-
- ```json
- {"layer1/activations/histogram_summary":
- [
- [1587176310.3070214, 0,
- [[0, 0.0], [668, 0.020253705367086237],..., [10000, 4.971314430236816]]],
- ...,
- [1587176419.1604998, 180,
- [[0, 0.0], [668, 0.021192153914175192],..., [10000, 6.3502936363220215]]]
- ]
- }
- ```
-
- 格式为
-
- ```json
- [
- wall_time, step,
- [[precentage, value],...,[precentage, value]]
- ]
- ```
-
- precentage取值分别为0, 668, 1587, 3085, 5000, 6915, 8413, 9332, 10000 对应标准正态分布的百分位数。
-
- ## Text
-
- 请求api:`api/text?run=.&tag=custom_tag`可获得tag为`custom_tag`的数据
-
- 其中`run`与`tag`缺一不可(目前只有一个数据集,run可随意给,不进行校验)
-
- 返回数据格式
-
- ```json
- {
- "custom_tag":
- [
- {"wall_time": 1585807655.373738, "step": 0,
- "value": "\u8fd9\u662f\u7b2c0\u53e5\u8bdd"},
- ...,
- {"wall_time": 1585807656.327519, "step": 99,
- "value": "\u8fd9\u662f\u7b2c99\u53e5\u8bdd"}
- ]
- }
- ```
-
- ## Audio
-
- 与图片类似,由于前端不能处理音频,所以音频请求分为两个地址
-
- 音频的信息,请求api:`api/audio?run=.&tag=waveform/audio_summary`可获得tag为`waveform/audio_summary`的音频信息
-
- 其中`run`与`tag`缺一不可(目前只有一个数据集,run可随意给,不进行校验)
-
- 返回数据格式
-
- ```json
- {
- "waveform/audio_summary":
- [
- {"wall_time": 1587475006.5022004, "step": 1, "label": "<p><em>Wave type:</em> <code>sine_wave</code>. <em>Frequency:</em> 448.98 Hz. <em>Sample:</em> 1 of 1.</p>", "contentType": "audio/wav"},
- ...
- {"wall_time": 1587475006.7304769, "step": 49, "label": "<p><em>Wave type:</em> <code>sine_wave</code>. <em>Frequency:</em> 880.00 Hz. <em>Sample:</em> 1 of 1.</p>", "contentType": "audio/wav"}
- ]
- }
- ```
-
- 拿到音频信息之后,再向后台请求音频
-
- 请求api:`api/audio_raw?step=0&run=.&tag=waveform/audio_summary`和得到音频
-
- 其中`step`、`run`与`tag`缺一不可(目前只有一个数据集,run可随意给,不进行校验)
-
- 返回数据为音频本身
-
- ## Embedding
-
- 高维数据,由于降维过程较为费时,数据首先在后端进行处理,然后返回降维后的数据。
-
- 具体请求也是分为两步,第一步根据run和tag得到数据对应的step信息。
-
- 1. 请求指定训练集和标签,返回对应标签的所有step和shape
-
- 请求`api` :`/api/projector?run=train&tag=outputs` 其中 run 、tag 缺一不可 返回数据格式如下:
-
- ```python
- {
- "outputs": [0, 1, 2, ... ,n],
- "shape": [n,m]
- }
- ```
-
- 2. 请求指定训练集,标签,step,method,dims 返回降维后的数据和原始标签
-
- 请求`api` :`api/projector_data?run=train&tag=outputs&step=0&method=pca&dims=3` ,其中 run 、tag、step、method 缺一不可,dims默认为3。返回数据格式如下:
-
- ```python
- {
- "0": [
- # 降维后的数据
- [[-1.5627723114617857, -3.9668523435955056, -0.18872563897943656],
- [-1.5627723114617857, -3.9668523435955056, -0.18872563897943656],
- [-1.5627723114617857, -3.9668523435955056, -0.18872563897943656],
- .....
- [-1.5627723114617857, -3.9668523435955056, -0.18872563897943656]],
- # label信息
- [7,0,5,6,7,1,...,9,6,4]
- ]
- }
- ```
-
- 3. 请求指定训练集,标签,序号 返回原始训练数据
-
- 请求`api` :api/projector_sample?run=.&tag=outputs&index=0 ,其中 run 、tag、index 缺一不可。返回原始数据:图片,音频,文本
-
-
-
- ## Graph
-
- 由于计算图graph每个网络中只包含一个,所以请求时只需给定run参数即可
-
- 请求`api` :`/api/graph?run=train`
-
- 返回run为train的计算图,数据格式为
-
- ```json
- {
- "net": "[{...}]", //graph计算图数据
- "operator": "[...]" //操作结点分类数据
- }
- ```
-
- ## exception
-
- 异常信息目前以projector的方式进行存取,标签信息请查看embedding(tag以 "**Variable:0**" 结尾)。
-
- 具体请求分为两步:
-
- 1. 请求指定训练集和标签,返回对应标签的所有step
-
- 请求`api` :`/api/exception?run=train&tag=layer1/weights/Variable:0` 其中 run 、tag 缺一不可 返回数据格式如下:
-
- ```python
- {
- "layer1/weights/Variable:0": [0, 1, 2, ... ,n]
- }
- ```
-
- 2. 请求指定训练集,标签,step 返回平铺后的异常数据
-
- 请求`api` :`api/exception_data?run=train&tag=layer1/weights/Variable:0&step=0` ,其中 run 、tag、step缺一不可,返回数据格式如下:
-
- ```python
- {
- "0":[
- [c1,c2], # 平铺前的数据维度大小(长度不定)
- min,
- max,
- mean,
- [[-1.5627723114617857, -3.9668523435955056, -0.18872563897943656],
- [-1.5627723114617857, -3.9668523435955056, -0.18872563897943656],
- [-1.5627723114617857, -3.9668523435955056, -0.18872563897943656],
- .....
- [-1.5627723114617857, -3.9668523435955056, -0.18872563897943656]]
- ]
- }
- ```
-
-
-
- 3. 请求指定训练集,标签,step 返回异常数据的直方图信息
-
- 请求`api` :`api/exception_hist?run=train&tag=layer1/weights/Variable:0&step=0` ,其中 run 、tag、step缺一不可,返回数据格式如下
-
- ```python
- {
- "0":[
- min,
- max,
- [[left, right, count],
- [left, right, count],
- .....
- [left, right, count]]
- ]
- }
- ```
-
- ## Hyperparam
-
- 请求api: `api/hyperparm?run=hparams`,可获得(如果有数据的话)run为hparams的超参数数据
-
- 返回数据格式:
-
- ```
- {"hparamsInfo": [{groupid_1:
- {"hparams": [{"name": 超参数1, "data": 数据1}, ..., {"name": 超参数2, "data": 数据2}],
- "start_time_secs": 开始时间}
- }
- ,...,
- {groupid_n:
- {"hparams": [{"name": 超参数1, "data": 数据1}, ..., {"name": 超参数2, "data": 数据2}], // 多个超参数的名字与值
- "start_time_secs": 开始时间}
- }], // 超参数信息,可能有多个
- "metrics": [{"tag": 量度1, "value": [值1, 值2, ...., 值n]},..., {"tag": 量度n, "value": [值1, 值2, ...., 值n]}]}
- //超参数的量度,可能有多个。适用于所有的超参数信息
- ```
-
- 例如train中的超参数数据为:
-
- ```
- {"hparamsInfo": [{"3df0d7cf35bec5a33c9fe551db732c24df204d7886b226c5a41cce285d0d4fd5":
- {"hparams": [{"name": "num_units", "data": 32.0},
- {"name": "optimizer", "data": "sgd"},
- {"name": "dropout", "data": 0.2}],
- "start_time_secs": 1589421877.1109092}
- }], // 超参数信息,可能有多个
- "metrics": [{"tag": "accuracy", "value": [0.8216999769210815, 0.8241999745368958, 0.7746999859809875, 0.765999972820282, 0.8411999940872192, 0.8307999968528748, 0.7940999865531921, 0.7904999852180481]}]} //超参数的量度,可能有多个。适用于所有的超参数信息
- ```
-
- ## Transformer
-
- Transformer分为视觉Transformer和文本Transformer
-
- ### 视觉Transformer
-
- 请求api: `api/transformer?run=image&tag=transformer-img0&l=0&x=0&y=0&g=0&r=0`,l为模型第几层数据,x为交互时点击图像的x坐标,y为交互时点击图像的y坐标,g表示是否全局归一化,r表示全局归一化时注意力值缩放的比例。
-
- 返回数据格式:
-
- ```python
- {
- tag:{
- "img": img_data, # 图像数据
- "attn_map": attn_map_datas, # 图像点击区域所对应的注意力值
- "layer": l, # 返回的是第几层的数据
- }
- }
- ```
-
- 例如:
-
- ```python
- {
- "transformer-img0": {
- "img": "", # 图像数据
- "attn_map": [
- "",
- "",
- ......
- ""
- ] # 图像点击区域所对应的第l层的注意力值
- "layer": "0", # 返回的是第几层的数据
- }
- }
- ```
-
- ### 文本Transformer
-
- 文本Transformer请求分为两步,首先请求文本数据,然后请求对应句子的注意力值。
-
- #### 请求文本数据
-
- 请求api: `api/transformer?run=text&tag=a-transformer-sentence`
-
- 返回数据格式:
-
- ```python
- {
- tag: [
- sentence1,
- sentence2,
- ......,
- sentence
- ]
- }
- ```
-
- 例如:
-
- ```python
- {
- "a-transformer-sentence": [
- "it's a charming and often affecting journey",
- "a gorgeous, witty , seductive movie.",
- ......
- "too slow , too long and too little happens"
- ]
- }
- ```
-
-
-
- #### 请求注意力值
-
- 请求api: `api/transformer?run=text&tag=a-transformer-0`
-
- 返回数据格式:
-
- ```python
- {
- tag:{
- "wall_time": 1654566787.412733,
- "step": 0,
- "data":{
- "attention": {
- "all":{
- "attn": attention_data, # 注意力值
- "left_text": sentence1, # 左侧句子的token
- "right_text": sentence2, # 右侧句子的token
- }
- }
- "bidrectional": "True", # 是否双向模型
- "default_filter": "all", # 默认filter,为all
- "displayMode": "light", # 显示方案(dark or light)
- "layer": "0", # 默认为0,0为显示层
- "head": "0" # 默认为0,0为显示头
- }
- }
- }
- ```
-
- 例如:
-
- ```python
- {
- 'a-transformer-0': {
- "wall_time": 1654566787.412733,
- "step": 0,
- "data":{
- "attention": {
- "all":{
- "attn": [[[[0.0354335643351078, 0.08718656003475189, 0.03417610377073288, ...]]],
- [[[0.35616645216941833, 0.01612984947860241, 0.01865621656179428, ...]]],
- ...]# 注意力值
- "left_text": ["[cls]", "it", "is", "a", "charming", "journey"], # 左侧句子的token
- "right_text": ["[cls]", "it", "is", "a", "charming", "journey"], # 右侧句子的token
- }
- }
- "bidrectional": "True", # 是否双向模型
- "default_filter": "all", # 默认filter,为all
- "displayMode": "light", # 显示方案(dark or light)
- "layer": "0", # 默认为0,0为显示层
- "head": "0" # 默认为0,0为显示头
- }
- }
- }
- ```
-
- ## featuremap
-
- #### 请求特征图数据
-
- 请求api: `api/featuremap?run=featuremap&tag=SequentialtoConv2d[0]-GradCam&range=0&task=Classification`
-
- tag为‘该层结构图uid属性+特征图方法’;range为请求图片起始位置,一次请求16张图片;task为模型任务('Classification', 'Segmentation', 'Detection')
-
- 返回数据格式:
-
- ```python
- {
- SequentialtoConv2d[0]-GradCam: [
- {
- "wall_time": "1652704541.6665807",
- "step": 0,
- "Remaining_pictures": 0, #剩余特征图张数
- "label": label, #模型识别的真实标签
- "sorce_data": sorce, #模型预测结果
- "value": featuremap_data #特征图数据
- }
- ]
- }
- ```
-
- 例如:
-
- ```python
- {
- SequentialtoConv2d[0]-GradCam: [
- {
- "wall_time": "1652704541.6665807",
- "step": 0,
- "Remaining_pictures": 0,
- "label": [1, 1],
- "sorce_data": [[0.9298991560935974, 0.07010085135698318], [0.36296913027763367, 0.637030839920044]], #模型预测结果
- "value":[
- "0": "...",
- "1": "..."
- ]
- }
- ]
- }
- ```
-
- ## state
-
- RNN隐状态可视化分为两步:首先获取全部维度的隐状态数据进行可视化。当前端传回需要匹配的模式后,返回匹配到的模式数据
-
- ### 请求隐状态数据
-
- 请求api: `api/state?run=rnn&tag=state&pos=0&range=24`
-
- pos为请求数据初始位置;range为请求字符数
-
- 返回数据格式:
-
- ```python
- {
- data:{
- "data:hidden_state_data, #隐状态数据
- "max": max_value, #隐状态最大值
- "min": min_value, #隐状态最小值
- "right": num, #右侧剩余字符串个数
- "word": word #请求字符串
- }
- }
- ```
-
- 例如:
-
- ```python
- {
- data:{
- "data:[[-0.016503384336829185, 0.07723195850849152, 0.014958282932639122, -0.024111060425639153,…],…],
- "max": 0.12384635955095291,
- "min": -0.15024906396865845,
- "right": 83,
- "word": "在用神经网络进行数字识别时,需要对神经网络进行训"
- }
- }
- ```
-
- ### 请求匹配模式数据
-
- 请求api: `api/state_select?run=rnn&tag=state&threshold=0&pattern=110`
-
- threshold为阈值;pattern为匹配模式:1为隐状态高于阈值,0为隐状态低于阈值
-
- 返回数据格式:
-
- ```python
- {
- data:res #匹配到的字符
- }
- ```
-
- 例如:
-
- ```python
- {
- data:[{id: 0, start_pos: 0, data: "在用神"}, {id: 1, start_pos: 3, data: "经网络"},…]
- }
- ```
|