|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586 |
- 1. 通道剪枝算子
- =========
-
- ## 1.1 "bn"剪枝算子
-
- - `get_pruneThre_bn():`卷积层对应的BN层的gamma参数作为缩放因子,获得剪枝对应阈值
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#L120)
- - **返回**:剪枝对应的阈值
-
- - `get_removeIndex_bn(a, thre):`根据阈值获得当前卷积层需要剪枝的通道index
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#L182)
- - **参数**:
- - **a**:当前卷积层的参数
- - **thre**:`get_pruneThre_bn()`返回的阈值
-
- 1.2 "conv_avg"剪枝算子
- ---------
-
- - `get_pruneThre_conv_avg():`卷积层参数的平均值作为缩放因子,获得剪枝对应阈值
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#L54)
- - **返回**:剪枝对应的阈值
-
- - `get_removeIndex_conv_avg(a, shape, thre):`根据阈值获得当前卷积层需要剪枝的通道index
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#L187)
- - **参数**:
- - **a**:当前卷积层的参数
- - **shape**:当前卷积层的shape信息
- - **thre**:`get_pruneThre_conv_avg()`返回的阈值
-
- ## 1.3 "conv_max"剪枝算子
-
- - 同"conv_avg"剪枝算子
-
- ## 1.4 "conv_all"剪枝算子
-
- - 同"conv_avg"剪枝算子
-
- 1.5 "random"剪枝算子
- ---------
-
- - `get_removeIndex_conv_avg(shape):`随机选择需要剪枝的通道index
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#L220)
- - **参数**:
- - **shape**:当前卷积层的shape信息
-
- 1.6 "dnn"剪枝算子
- ---------
-
- - `get_pruneThre_fc():`全连接层的神经元的参数的平均值作为缩放因子,获得剪枝对应阈值
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#137)
- - **返回**:剪枝对应的阈值
-
- - `get_removeIndex_fc(a, shape, thre):`根据阈值获得当前全连接层需要剪枝的神经元index
- - [源代码](../model_compress/ChannelSlimming/prune/util/prune_algorithm.py#L171)
- - **参数**:
- - **a**:当前全连接层的参数
- - **shape**:当前全连接层的shape信息
- - **thre**:`get_pruneThre_fc()`返回的阈值
-
- 2. 模型调用算子
- =========
-
- ## 2.1 pruneDnn.py
-
- - DNN模型剪枝,可调用1.6剪枝算子
- - [文件](../model_compress/ChannelSlimming/prune/pruneDnn.py)
-
- ## 2.2 pruneLenet.py
-
- - CNN模型的lenet模型剪枝,可调用1.1-1.5剪枝算子
- - [文件](../model_compress/ChannelSlimming/prune/pruneLenet.py)
-
- ## 2.3 pruneAlexnet.py
-
- - CNN模型的lenet模型剪枝,可调用1.1-1.5剪枝算子
- - [文件](../model_compress/ChannelSlimming/prune/pruneAlexnet.py)
-
- ## 2.4 pruneVggnet.py
-
- - CNN模型的lenet模型剪枝,可调用1.1-1.5剪枝算子
- - [文件](../model_compress/ChannelSlimming/prune/pruneVggnet.py)
-
- ## 2.5 pruneResnet.py
-
- - CNN模型的lenet模型剪枝,可调用1.1-1.5剪枝算子
- - [文件](../model_compress/ChannelSlimming/prune/pruneResnet.py)
|