You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

demo_dataset.py 3.6 kB

2 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899
  1. """
  2. # -*- coding: utf-8 -*-
  3. -----------------------------------------------------------------------------------
  4. # Author: Nguyen Mau Dung
  5. # DoC: 2020.08.17
  6. # email: nguyenmaudung93.kstn@gmail.com
  7. -----------------------------------------------------------------------------------
  8. # Description: This script for the KITTI dataset
  9. """
  10. import sys
  11. import os
  12. from builtins import int
  13. from glob import glob
  14. import numpy as np
  15. from torch.utils.data import Dataset
  16. import cv2
  17. import torch
  18. src_dir = os.path.dirname(os.path.realpath(__file__))
  19. # while not src_dir.endswith("sfa"):
  20. # src_dir = os.path.dirname(src_dir)
  21. if src_dir not in sys.path:
  22. sys.path.append(src_dir)
  23. from data_process.kitti_data_utils import get_filtered_lidar
  24. from data_process.kitti_bev_utils import makeBEVMap
  25. import config.kitti_config as cnf
  26. class Demo_KittiDataset(Dataset):
  27. def __init__(self, configs):
  28. self.dataset_dir = os.path.join(configs.dataset_dir, configs.foldername, configs.foldername[:10],
  29. configs.foldername)
  30. self.input_size = configs.input_size
  31. self.hm_size = configs.hm_size
  32. self.num_classes = configs.num_classes
  33. self.max_objects = configs.max_objects
  34. self.image_dir = os.path.join(self.dataset_dir, "image_02", "data")
  35. self.lidar_dir = os.path.join(self.dataset_dir, "velodyne_points", "data")
  36. self.label_dir = os.path.join(self.dataset_dir, "label_2", "data")
  37. self.sample_id_list = sorted(glob(os.path.join(self.lidar_dir, '*.bin')))
  38. self.sample_id_list = [float(os.path.basename(fn)[:-4]) for fn in self.sample_id_list]
  39. self.num_samples = len(self.sample_id_list)
  40. def __len__(self):
  41. return len(self.sample_id_list)
  42. def __getitem__(self, index):
  43. pass
  44. def load_bevmap_front(self, index):
  45. """Load only image for the testing phase"""
  46. sample_id = int(self.sample_id_list[index])
  47. img_path, img_rgb = self.get_image(sample_id)
  48. lidarData = self.get_lidar(sample_id)
  49. front_lidar = get_filtered_lidar(lidarData, cnf.boundary)
  50. front_bevmap = makeBEVMap(front_lidar, cnf.boundary)
  51. front_bevmap = torch.from_numpy(front_bevmap)
  52. metadatas = {
  53. 'img_path': img_path,
  54. }
  55. return metadatas, front_bevmap, img_rgb
  56. def load_bevmap_front_vs_back(self, index):
  57. """Load only image for the testing phase"""
  58. sample_id = int(self.sample_id_list[index])
  59. img_path, img_rgb = self.get_image(sample_id)
  60. lidarData = self.get_lidar(sample_id)
  61. front_lidar = get_filtered_lidar(lidarData, cnf.boundary)
  62. front_bevmap = makeBEVMap(front_lidar, cnf.boundary)
  63. front_bevmap = torch.from_numpy(front_bevmap)
  64. back_lidar = get_filtered_lidar(lidarData, cnf.boundary_back)
  65. back_bevmap = makeBEVMap(back_lidar, cnf.boundary_back)
  66. back_bevmap = torch.from_numpy(back_bevmap)
  67. metadatas = {
  68. 'img_path': img_path,
  69. }
  70. return metadatas, front_bevmap, back_bevmap, img_rgb
  71. def get_image(self, idx):
  72. img_path = os.path.join(self.image_dir, '{:010d}.png'.format(idx))
  73. img = cv2.cvtColor(cv2.imread(img_path), cv2.COLOR_BGR2RGB)
  74. return img_path, img
  75. def get_lidar(self, idx):
  76. lidar_file = os.path.join(self.lidar_dir, '{:010d}.bin'.format(idx))
  77. # assert os.path.isfile(lidar_file)
  78. return np.fromfile(lidar_file, dtype=np.float32).reshape(-1, 4)

一站式算法开发平台、高性能分布式深度学习框架、先进算法模型库、视觉模型炼知平台、数据可视化分析平台等一系列平台及工具,在模型高效分布式训练、数据处理和可视分析、模型炼知和轻量化等技术上形成独特优势,目前已在产学研等各领域近千家单位及个人提供AI应用赋能