You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

trans_graph.py 5.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. """
  2. Copyright 2020 Tianshu AI Platform. All Rights Reserved.
  3. Licensed under the Apache License, Version 2.0 (the "License");
  4. you may not use this file except in compliance with the License.
  5. You may obtain a copy of the License at
  6. http://www.apache.org/licenses/LICENSE-2.0
  7. Unless required by applicable law or agreed to in writing, software
  8. distributed under the License is distributed on an "AS IS" BASIS,
  9. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  10. See the License for the specific language governing permissions and
  11. limitations under the License.
  12. =============================================================
  13. """
  14. import torch
  15. import networkx as nx
  16. from . import depara
  17. import os, abc
  18. from typing import Callable
  19. from kamal import hub
  20. import json, numbers
  21. from tqdm import tqdm
  22. class Node(object):
  23. def __init__(self, hub_root, entry_name, spec_name):
  24. self.hub_root = hub_root
  25. self.entry_name = entry_name
  26. self.spec_name = spec_name
  27. @property
  28. def model(self):
  29. return hub.load( self.hub_root, entry_name=self.entry_name, spec_name=self.spec_name ).eval()
  30. @property
  31. def tag(self):
  32. return hub.load_tags(self.hub_root, entry_name=self.entry_name, spec_name=self.spec_name)
  33. @property
  34. def metadata(self):
  35. return hub.load_metadata(self.hub_root, entry_name=self.entry_name, spec_name=self.spec_name)
  36. class TransferabilityGraph(object):
  37. def __init__(self, model_zoo_set):
  38. self.model_zoo_set = model_zoo_set
  39. # self.model_zoo = os.path.abspath( os.path.expanduser( model_zoo ) )
  40. self._graphs = dict()
  41. self._models = dict()
  42. self._register_models()
  43. def _register_models(self):
  44. cnt = 0
  45. for model_zoo in self.model_zoo_set:
  46. model_zoo = os.path.abspath(os.path.expanduser(model_zoo))
  47. for hub_root in self._list_modelzoo(model_zoo):
  48. for entry_name, spec_name in hub.list_spec(hub_root):
  49. node = Node( hub_root, entry_name, spec_name )
  50. name = node.metadata['name']
  51. self._models[name] = node
  52. cnt += 1
  53. print("%d models has been registered!"%cnt)
  54. def _list_modelzoo(self, zoo_dir):
  55. zoo_list = []
  56. def _traverse(path):
  57. for item in os.listdir(path):
  58. item_path = os.path.join(path, item)
  59. if os.path.isdir(item_path):
  60. if os.path.exists(os.path.join( item_path, 'code/hubconf.py' )):
  61. zoo_list.append(item_path)
  62. else:
  63. _traverse( item_path )
  64. _traverse(zoo_dir)
  65. return zoo_list
  66. def add_metric(self, metric_name, metric):
  67. self._graphs[metric_name] = g = nx.DiGraph()
  68. g.add_nodes_from( self._models.values() )
  69. for n1 in self._models.values():
  70. for n2 in tqdm(self._models.values()):
  71. if n1!=n2 and not g.has_edge(n1, n2):
  72. try:
  73. g.add_edge(n1, n2, dist=metric( n1, n2 ))
  74. except:
  75. ori_device = metric.device
  76. metric.device = torch.device('cpu')
  77. g.add_edge(n1, n2, dist=metric( n1, n2 ))
  78. metric.device = ori_device
  79. def export_to_json(self, metric_name, output_filename, topk=None, normalize=False):
  80. graph = self._graphs.get( metric_name, None )
  81. assert graph is not None
  82. graph_data={
  83. 'nodes': [],
  84. 'edges': [],
  85. }
  86. node_to_idx = {}
  87. for i, node in enumerate(self._models.values()):
  88. tags = node.tag
  89. metadata = node.metadata
  90. node_data = { k:v for (k, v) in tags.items() if isinstance(v, (numbers.Number, str) ) }
  91. node_data['name'] = metadata['name']
  92. node_data['task'] = metadata['task']
  93. node_data['dataset'] = metadata['dataset']
  94. node_data['url'] = metadata['url']
  95. node_data['id'] = i
  96. graph_data['nodes'].append({'tags': node_data})
  97. node_to_idx[node] = i
  98. # record Edges
  99. edge_list = graph_data['edges']
  100. topk_dist = { idx: [] for idx in range(len( self._models )) }
  101. for i, edge in enumerate(graph.edges.data('dist')):
  102. s, t, d = int( node_to_idx[edge[0]] ), int( node_to_idx[edge[1]] ), float(edge[2])
  103. topk_dist[s].append(d)
  104. edge_list.append([
  105. s, t, d # source, target, distance
  106. ])
  107. if isinstance(topk, int):
  108. for i, dist in topk_dist.items():
  109. dist.sort()
  110. topk_dist[i] = dist[topk]
  111. graph_data['edges'] = [ edge for edge in edge_list if edge[2] < topk_dist[edge[0]] ]
  112. if normalize:
  113. edge_dist = [e[2] for e in graph_data['edges']]
  114. min_dist, max_dist = min(edge_dist), max(edge_dist)
  115. for e in graph_data['edges']:
  116. e[2] = (e[2] - min_dist+1e-8) / (max_dist - min_dist+1e-8)
  117. with open(output_filename, 'w') as fp:
  118. json.dump(graph_data, fp)

一站式算法开发平台、高性能分布式深度学习框架、先进算法模型库、视觉模型炼知平台、数据可视化分析平台等一系列平台及工具,在模型高效分布式训练、数据处理和可视分析、模型炼知和轻量化等技术上形成独特优势,目前已在产学研等各领域近千家单位及个人提供AI应用赋能

Contributors (1)