""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ from kamal.core.engine.engine import Engine from kamal.core.engine.hooks import FeatureHook from kamal.core import tasks from kamal.utils import set_mode, move_to_device import torch import torch.nn as nn import torch.nn.functional as F import typing, time import numpy as np def conv3x3(in_planes, out_planes, stride=1): """3x3 convolution with padding""" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class ResBlock(nn.Module): """ Residual Blocks """ def __init__(self, inplanes, planes, stride=1, momentum=0.1): super(ResBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes, momentum=momentum) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes, momentum=momentum) if stride > 1 or inplanes != planes: self.downsample = nn.Sequential( nn.Conv2d(inplanes, planes, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes, momentum=momentum) ) else: self.downsample = None self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class CFL_FCBlock(nn.Module): """Common Feature Blocks for Fully-Connected layer This module is used to capture the common features of multiple teachers and calculate mmd with features of student. **Parameters:** - cs (int): channel number of student features - channel_ts (list or tuple): channel number list of teacher features - ch (int): channel number of hidden features """ def __init__(self, cs, cts, ch, k_size=5): super(CFL_FCBlock, self).__init__() self.align_t = nn.ModuleList() for ct in cts: self.align_t.append( nn.Sequential( nn.Linear(ct, ch), nn.ReLU(inplace=True) ) ) self.align_s = nn.Sequential( nn.Linear(cs, ch), nn.ReLU(inplace=True), ) self.extractor = nn.Sequential( nn.Linear(ch, ch), nn.ReLU(), nn.Linear(ch, ch), ) self.dec_t = nn.ModuleList() for ct in cts: self.dec_t.append( nn.Sequential( nn.Linear(ch, ct), nn.ReLU(inplace=True), nn.Linear(ct, ct) ) ) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): torch.nn.init.kaiming_normal_(m.weight, nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, fs, fts): aligned_t = [self.align_t[i](fts[i]) for i in range(len(fts))] aligned_s = self.align_s(fs) hts = [self.extractor(f) for f in aligned_t] hs = self.extractor(aligned_s) _fts = [self.dec_t[i](hts[i]) for i in range(len(hts))] return (hs, hts), (_fts, fts) class CFL_ConvBlock(nn.Module): """Common Feature Blocks for Convolutional layer This module is used to capture the common features of multiple teachers and calculate mmd with features of student. **Parameters:** - cs (int): channel number of student features - channel_ts (list or tuple): channel number list of teacher features - ch (int): channel number of hidden features """ def __init__(self, cs, cts, ch, k_size=5): super(CFL_ConvBlock, self).__init__() self.align_t = nn.ModuleList() for ct in cts: self.align_t.append( nn.Sequential( nn.Conv2d(in_channels=ct, out_channels=ch, kernel_size=1), nn.BatchNorm2d(ch), nn.ReLU(inplace=True) ) ) self.align_s = nn.Sequential( nn.Conv2d(in_channels=cs, out_channels=ch, kernel_size=1), nn.BatchNorm2d(ch), nn.ReLU(inplace=True), ) self.extractor = nn.Sequential( ResBlock(inplanes=ch, planes=ch, stride=1), ResBlock(inplanes=ch, planes=ch, stride=1), ) self.dec_t = nn.ModuleList() for ct in cts: self.dec_t.append( nn.Sequential( nn.Conv2d(ch, ch, kernel_size=1, stride=1), nn.BatchNorm2d(ch), nn.ReLU(inplace=True), nn.Conv2d(ch, ct, kernel_size=1, stride=1) ) ) def init_weights(self): for m in self.modules(): if isinstance(m, nn.Conv2d): torch.nn.init.kaiming_normal_(m.weight, nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def forward(self, fs, fts): aligned_t = [self.align_t[i](fts[i]) for i in range(len(fts))] aligned_s = self.align_s(fs) hts = [self.extractor(f) for f in aligned_t] hs = self.extractor(aligned_s) _fts = [self.dec_t[i](hts[i]) for i in range(len(hts))] return (hs, hts), (_fts, fts) class CommonFeatureAmalgamator(Engine): def setup( self, student, teachers, layer_groups: typing.Sequence[typing.Sequence], layer_channels: typing.Sequence[typing.Sequence], dataloader: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, weights = [1.0, 1.0, 1.0], on_layer_input=False, device = None, ): self._dataloader = dataloader if device is None: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) self._device = device self._model = self._student = student.to(self._device) self._teachers = nn.ModuleList(teachers).to(self._device) self._optimizer = optimizer self._weights = weights self._on_layer_input = on_layer_input amal_blocks = [] for group, C in zip( layer_groups, layer_channels ): hooks = [ FeatureHook(layer) for layer in group ] if isinstance(group[0], nn.Linear): amal_block = CFL_FCBlock( cs=C[0], cts=C[1:], ch=C[0]//4 ).to(self._device).train() print("Building FC Blocks") else: amal_block = CFL_ConvBlock(cs=C[0], cts=C[1:], ch=C[0]//4).to(self._device).train() print("Building Conv Blocks") amal_blocks.append( (amal_block, hooks, C) ) self._amal_blocks = amal_blocks self._cfl_criterion = tasks.loss.CFLLoss( sigmas=[0.001, 0.01, 0.05, 0.1, 0.2, 1, 2] ) @property def device(self): return self._device def run(self, max_iter, start_iter=0, epoch_length=None): block_params = [] for block, _, _ in self._amal_blocks: block_params.extend( list(block.parameters()) ) if isinstance( self._optimizer, torch.optim.SGD ): self._amal_optimimizer = torch.optim.SGD( block_params, lr=self._optimizer.param_groups[0]['lr'], momentum=0.9, weight_decay=1e-4 ) else: self._amal_optimimizer = torch.optim.Adam( block_params, lr=self._optimizer.param_groups[0]['lr'], weight_decay=1e-4 ) self._amal_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( self._amal_optimimizer, T_max=max_iter ) with set_mode(self._student, training=True), \ set_mode(self._teachers, training=False): super( CommonFeatureAmalgamator, self ).run(self.step_fn, self._dataloader, start_iter=start_iter, max_iter=max_iter, epoch_length=epoch_length) def step_fn(self, engine, batch): start_time = time.perf_counter() batch = move_to_device(batch, self._device) data = batch[0] s_out = self._student( data ) with torch.no_grad(): t_out = [ teacher( data ) for teacher in self._teachers ] loss_amal = 0 loss_recons = 0 for amal_block, hooks, C in self._amal_blocks: features = [ h.feat_in if self._on_layer_input else h.feat_out for h in hooks ] fs, fts = features[0], features[1:] (hs, hts), (_fts, fts) = amal_block( fs, fts ) _loss_amal, _loss_recons = self._cfl_criterion( hs, hts, _fts, fts ) loss_amal += _loss_amal loss_recons += _loss_recons loss_kd = tasks.loss.kldiv( s_out, torch.cat( t_out, dim=1 ) ) loss_dict = { 'loss_kd': self._weights[0]*loss_kd, 'loss_amal': self._weights[1]*loss_amal, 'loss_recons': self._weights[2]*loss_recons } loss = sum(loss_dict.values()) self._optimizer.zero_grad() self._amal_optimimizer.zero_grad() loss.backward() self._optimizer.step() self._amal_optimimizer.step() self._amal_scheduler.step() step_time = time.perf_counter() - start_time metrics = { loss_name: loss_value.item() for (loss_name, loss_value) in loss_dict.items() } metrics.update({ 'total_loss': loss.item(), 'step_time': step_time, 'lr': float( self._optimizer.param_groups[0]['lr'] ) }) return metrics