""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ import torch import torch.nn as nn import torch.nn.functional as F from kamal.core.engine.engine import Engine from kamal.core.engine.hooks import FeatureHook from kamal.core import tasks from kamal.utils import set_mode import typing import time from kamal.utils import move_to_device, set_mode class AmalBlock(nn.Module): def __init__(self, cs, cts): super( AmalBlock, self ).__init__() self.cs, self.cts = cs, cts self.enc = nn.Conv2d( in_channels=sum(self.cts), out_channels=self.cs, kernel_size=1, stride=1, padding=0, bias=True ) self.fam = nn.Conv2d( in_channels=self.cs, out_channels=self.cs, kernel_size=1, stride=1, padding=0, bias=True ) self.dec = nn.Conv2d( in_channels=self.cs, out_channels=sum(self.cts), kernel_size=1, stride=1, padding=0, bias=True ) def forward(self, fs, fts): rep = self.enc( torch.cat( fts, dim=1 ) ) _fts = self.dec( rep ) _fts = torch.split( _fts, self.cts, dim=1 ) _fs = self.fam( fs ) return rep, _fs, _fts class LayerWiseAmalgamator(Engine): def setup( self, student, teachers, layer_groups: typing.Sequence[typing.Sequence], layer_channels: typing.Sequence[typing.Sequence], dataloader: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, weights = [1., 1., 1.], device=None, ): if device is None: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) self._device = device self._dataloader = dataloader self.model = self.student = student.to(self.device) self.teachers = nn.ModuleList(teachers).to(self.device) self.optimizer = optimizer self._weights = weights amal_blocks = [] for group, C in zip(layer_groups, layer_channels): hooks = [ FeatureHook(layer) for layer in group ] amal_block = AmalBlock(cs=C[0], cts=C[1:]).to(self.device).train() amal_blocks.append( (amal_block, hooks, C) ) self._amal_blocks = amal_blocks @property def device(self): return self._device def run(self, max_iter, start_iter=0, epoch_length=None ): block_params = [] for block, _, _ in self._amal_blocks: block_params.extend( list(block.parameters()) ) if isinstance( self.optimizer, torch.optim.SGD ): self._amal_optimimizer = torch.optim.SGD( block_params, lr=self.optimizer.param_groups[0]['lr'], momentum=0.9, weight_decay=1e-4 ) else: self._amal_optimimizer = torch.optim.Adam( block_params, lr=self.optimizer.param_groups[0]['lr'], weight_decay=1e-4 ) self._amal_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR( self._amal_optimimizer, T_max=max_iter ) with set_mode(self.student, training=True), \ set_mode(self.teachers, training=False): super( LayerWiseAmalgamator, self ).run(self.step_fn, self._dataloader, start_iter=start_iter, max_iter=max_iter, epoch_length=epoch_length) @property def device(self): return self._device def step_fn(self, engine, batch): start_time = time.perf_counter() batch = move_to_device(batch, self._device) data = batch[0] s_out = self.student( data ) with torch.no_grad(): t_out = [ teacher( data ) for teacher in self.teachers ] loss_amal = 0 loss_recons = 0 for amal_block, hooks, C in self._amal_blocks: features = [ h.feat_out for h in hooks ] fs, fts = features[0], features[1:] rep, _fs, _fts = amal_block( fs, fts ) loss_amal += F.mse_loss( _fs, rep.detach() ) loss_recons += sum( [ F.mse_loss( _ft, ft ) for (_ft, ft) in zip( _fts, fts ) ] ) loss_kd = tasks.loss.kldiv( s_out, torch.cat( t_out, dim=1 ) ) #loss_kd = F.mse_loss( s_out, torch.cat( t_out, dim=1 ) ) loss_dict = { "loss_kd": self._weights[0] * loss_kd, "loss_amal": self._weights[1] * loss_amal, "loss_recons": self._weights[2] * loss_recons } loss = sum(loss_dict.values()) self.optimizer.zero_grad() self._amal_optimimizer.zero_grad() loss.backward() self.optimizer.step() self._amal_optimimizer.step() self._amal_scheduler.step() step_time = time.perf_counter() - start_time metrics = { loss_name: loss_value.item() for (loss_name, loss_value) in loss_dict.items() } metrics.update({ 'total_loss': loss.item(), 'step_time': step_time, 'lr': float( self.optimizer.param_groups[0]['lr'] ) }) return metrics