""" Copyright 2020 Tianshu AI Platform. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================= """ import torch import torch.nn as nn import torch.nn.functional as F from kamal.core.engine.engine import Engine from kamal.core.engine.hooks import FeatureHook from kamal.core import tasks from kamal.utils import move_to_device, set_mode from kamal.core.hub import meta from kamal import vision import kamal from kamal.utils import set_mode import typing import time from copy import deepcopy import random import numpy as np from collections import defaultdict import numbers class BranchySegNet(nn.Module): def __init__(self, out_channels, segnet_fn=vision.models.segmentation.segnet_vgg16_bn): super(BranchySegNet, self).__init__() channels=[512, 512, 256, 128, 64] self.register_buffer( 'branch_indices', torch.zeros((len(out_channels),)) ) self.student_b_decoders_list = nn.ModuleList() self.student_adaptors_list = nn.ModuleList() ses = [] for i in range(5): se = int(channels[i]/4) ses.append(16 if se < 16 else se) for oc in out_channels: segnet = self.get_segnet( oc, segnet_fn ) decoders = nn.ModuleList(deepcopy(list(segnet.children())[5:])) adaptors = nn.ModuleList() for i in range(5): adaptor = nn.Sequential( nn.Conv2d(channels[i], ses[i], kernel_size=1, bias=False), nn.ReLU(), nn.Conv2d(ses[i], channels[i], kernel_size=1, bias=False), nn.Sigmoid() ) adaptors.append(adaptor) self.student_b_decoders_list.append(decoders) self.student_adaptors_list.append(adaptors) self.student_encoders = nn.ModuleList(deepcopy(list(segnet.children())[0:5])) self.student_decoders = nn.ModuleList(deepcopy(list(segnet.children())[5:])) def set_branch(self, branch_indices): assert len(branch_indices)==len(self.student_b_decoders_list) self.branch_indices = torch.from_numpy( np.array( branch_indices ) ).to(self.branch_indices.device) def get_segnet(self, oc, segnet_fn): return segnet_fn( num_classes=oc, pretrained_backbone=True ) def forward(self, inputs): output_list = [] down1, indices_1, unpool_shape1 = self.student_encoders[0](inputs) down2, indices_2, unpool_shape2 = self.student_encoders[1](down1) down3, indices_3, unpool_shape3 = self.student_encoders[2](down2) down4, indices_4, unpool_shape4 = self.student_encoders[3](down3) down5, indices_5, unpool_shape5 = self.student_encoders[4](down4) up5 = self.student_decoders[0](down5, indices_5, unpool_shape5) up4 = self.student_decoders[1](up5, indices_4, unpool_shape4) up3 = self.student_decoders[2](up4, indices_3, unpool_shape3) up2 = self.student_decoders[3](up3, indices_2, unpool_shape2) up1 = self.student_decoders[4](up2, indices_1, unpool_shape1) decoder_features = [down5, up5, up4, up3, up2] decoder_indices = [indices_5, indices_4, indices_3, indices_2, indices_1] decoder_shapes = [unpool_shape5, unpool_shape4, unpool_shape3, unpool_shape2, unpool_shape1] # Mimic teachers. for i in range(len(self.branch_indices)): out_idx = self.branch_indices[i] output = decoder_features[out_idx] output = output * self.student_adaptors_list[i][out_idx](F.avg_pool2d(output, output.shape[2:3])) for j in range(out_idx, 5): output = self.student_b_decoders_list[i][j]( output, decoder_indices[j], decoder_shapes[j] ) output_list.append( output ) return output_list class JointSegNet(nn.Module): """The online student model to learn from any number of single teacher with 'SegNet' structure. **Parameters:** - **teachers** (list of 'Module' object): Teachers with 'SegNet' structure to learn from. - **indices** (list of int): Where to branch out for each task. - **phase** (string): Should be 'block' or 'finetune'. Useful only in training mode. - **channels** (list of int, optional): Parameter to build adaptor modules, corresponding to that of 'SegNet'. """ def __init__(self, teachers, student=None, channels=[512, 512, 256, 128, 64]): super(JointSegNet, self).__init__() self.register_buffer( 'branch_indices', torch.zeros((2,)) ) if student is None: student = teachers[0] self.student_encoders = nn.ModuleList(deepcopy(list(teachers[0].children())[0:5])) self.student_decoders = nn.ModuleList(deepcopy(list(teachers[0].children())[5:])) self.student_b_decoders_list = nn.ModuleList() self.student_adaptors_list = nn.ModuleList() ses = [] for i in range(5): se = int(channels[i]/4) ses.append(16 if se < 16 else se) for teacher in teachers: decoders = nn.ModuleList(deepcopy(list(teacher.children())[5:])) adaptors = nn.ModuleList() for i in range(5): adaptor = nn.Sequential( nn.Conv2d(channels[i], ses[i], kernel_size=1, bias=False), nn.ReLU(), nn.Conv2d(ses[i], channels[i], kernel_size=1, bias=False), nn.Sigmoid() ) adaptors.append(adaptor) self.student_b_decoders_list.append(decoders) self.student_adaptors_list.append(adaptors) def set_branch(self, branch_indices): assert len(branch_indices)==len(self.student_b_decoders_list) self.branch_indices = torch.from_numpy( np.array( branch_indices ) ).to(self.branch_indices.device) def forward(self, inputs): output_list = [] down1, indices_1, unpool_shape1 = self.student_encoders[0](inputs) down2, indices_2, unpool_shape2 = self.student_encoders[1](down1) down3, indices_3, unpool_shape3 = self.student_encoders[2](down2) down4, indices_4, unpool_shape4 = self.student_encoders[3](down3) down5, indices_5, unpool_shape5 = self.student_encoders[4](down4) up5 = self.student_decoders[0](down5, indices_5, unpool_shape5) up4 = self.student_decoders[1](up5, indices_4, unpool_shape4) up3 = self.student_decoders[2](up4, indices_3, unpool_shape3) up2 = self.student_decoders[3](up3, indices_2, unpool_shape2) up1 = self.student_decoders[4](up2, indices_1, unpool_shape1) decoder_features = [down5, up5, up4, up3, up2] decoder_indices = [indices_5, indices_4, indices_3, indices_2, indices_1] decoder_shapes = [unpool_shape5, unpool_shape4, unpool_shape3, unpool_shape2, unpool_shape1] # Mimic teachers. for i in range(len(self.branch_indices)): out_idx = self.branch_indices[i] output = decoder_features[out_idx] output = output * self.student_adaptors_list[i][out_idx](F.avg_pool2d(output, output.shape[2:3])) for j in range(out_idx, 5): output = self.student_b_decoders_list[i][j]( output, decoder_indices[j], decoder_shapes[j] ) output_list.append( output ) return output_list class TaskBranchingAmalgamator(Engine): def setup( self, joint_student: JointSegNet, teachers, tasks, dataloader: torch.utils.data.DataLoader, optimizer: torch.optim.Optimizer, device=None, ): if device is None: device = torch.device( 'cuda' if torch.cuda.is_available() else 'cpu' ) self._device = device self._dataloader = dataloader self.student = self.model = joint_student.to(self._device) self.teachers = nn.ModuleList(teachers).to(self._device) self.tasks = tasks self.optimizer = optimizer self.is_finetuning=False @property def device(self): return self._device def run(self, max_iter, start_iter=0, epoch_length=None, stage_callback=None ): # Branching with set_mode(self.student, training=True), \ set_mode(self.teachers, training=False): super( TaskBranchingAmalgamator, self ).run(self.step_fn, self._dataloader, start_iter=start_iter, max_iter=max_iter//2, epoch_length=epoch_length) branch = self.find_the_best_branch( self._dataloader ) self.logger.info("[Task Branching] the best branch indices: %s"%(branch)) if stage_callback is not None: stage_callback() # Finetuning self.is_finetuning = True with set_mode(self.student, training=True), \ set_mode(self.teachers, training=False): super( TaskBranchingAmalgamator, self ).run(self.step_fn, self._dataloader, start_iter=max_iter-max_iter//2, max_iter=max_iter, epoch_length=epoch_length) def find_the_best_branch(self, dataloader): with set_mode(self.student, training=False), \ set_mode(self.teachers, training=False), \ torch.no_grad(): n_blocks = len(self.student.student_decoders) branch_loss = { task: [0 for _ in range(n_blocks)] for task in self.tasks } for batch in dataloader: batch = move_to_device(batch, self.device) data = batch if isinstance(batch, torch.Tensor) else batch[0] for candidate_branch in range( n_blocks ): self.student.set_branch( [candidate_branch for _ in range(len(self.teachers))] ) s_out_list = self.student( data ) t_out_list = [ teacher( data ) for teacher in self.teachers ] for task, s_out, t_out in zip( self.tasks, s_out_list, t_out_list ): task_loss = task.get_loss( s_out, t_out ) branch_loss[task][candidate_branch] += sum(task_loss.values()) best_brach = [] for task in self.tasks: best_brach.append( int(np.argmin( branch_loss[task] )) ) self.student.set_branch(best_brach) return best_brach @property def device(self): return self._device def step_fn(self, engine, batch): start_time = time.perf_counter() batch = move_to_device(batch, self._device) data = batch[0] #data = batch if isinstance(batch, torch.Tensor) else batch[0] data, None n_blocks = len(self.student.student_decoders) if not self.is_finetuning: rand_branch_indices = [ random.randint(0, n_blocks-1) for _ in range(len(self.teachers)) ] self.student.set_branch(rand_branch_indices) s_out_list = self.student( data ) with torch.no_grad(): t_out_list = [ teacher( data ) for teacher in self.teachers ] loss_dict = {} for task, s_out, t_out in zip( self.tasks, s_out_list, t_out_list ): task_loss = task.get_loss( s_out, t_out ) loss_dict.update( task_loss ) loss = sum(loss_dict.values()) self.optimizer.zero_grad() loss.backward() self.optimizer.step() step_time = time.perf_counter() - start_time metrics = { loss_name: loss_value.item() for (loss_name, loss_value) in loss_dict.items() } metrics.update({ 'total_loss': loss.item(), 'step_time': step_time, 'lr': float( self.optimizer.param_groups[0]['lr'] ), 'branch': self.student.branch_indices.cpu().numpy().tolist() }) return metrics